Dynamic Network Analysis

An Introduction

Björn Siepe

Psychological Methods Lab, University of Marburg

October 23, 2024

Materials and Goals

Slides at bsiepe.github.io/workshops

  1. Understand advantages and structure of time series data and dynamic networks
  2. Interpret dynamic networks
  3. Get to know core assumptions, evidence, and limitations
  4. Learn about new developments and future research topics

What we don’t cover (in detail)

  1. Planning of longitudinal studies
  2. Panel Data
  3. Data and preprocessing (very important)
  4. Clinical theory

Hype Cycle

eJzsveuSJbeRJvgE5x1yf8hMnB1lBwJ37diaZdZFoxZ1MVHq6TZZG61UTEo1qqziFout5T79+ucX BAKBzDyZxd6l2YinW5XHDwLucDgcfgPiJ//b77742dVX7/988zN/uVycfvKTZx9uXn18/+HnFwy9 +OXbt999+/EDQD/9/WcXbr1cqNHVL8uX2vBfbj58++b9u5/zT5eOfnyJp3/6xT9/8ceLLz7/5Ref 9X/Tz3948/HtDTX4xasPH9/dfPjv339z8+z7129vLr/9j798ZgRQj89ffbxBr/+05n9a8kX8uSsX v/s1Nbh+/927r968+8v1+/+bfnee/j9fpLxehAL0//3N72++HdtcehcDGtIfJVBrd1lzSvTIcplL TfTc8/evv7u9effxdx/ev7759ttn79++//Dtzy+eff/q3cWvX/2Ffnl18W83b9++//vF9dtXr/92 Ii7EL1++eXtDA7599fGigDVXv3Trl9ffvXn71W++u/3zDXEirksE3H/JXf7xW+qLusXfAOcvf3lL kC9uPn4kegkh+Pvs1//2q2fE9/e33I6GoJ+f/un3N395wxNCLPr3z7RtT7M0Xujz01+8ff/nV28v nt/cfHPxxc0rovu7Gzzyv18sl4UauK7RLz7c3LyTH+Xp7afffffhhvmgzw5P8s/CGWvgdg1+f/NV e/Iy7n764v/67tW3f/1M+POHm9tv3tKs86T5mqitXyL+d/tbWxLXZWpXyN0alvUi53qZYy0XaVmk 1TajN//x5ubvP7/4zft3NzJtVx8+fvHm/6F5yHW9SG4V6O+/e3vz4Y/v3nykaWBQlTn79fuvbt4q iJ99+fYVT1Xjhf6vNPjDqw9/uflIUvj+7XcfeW2URX8iofj81fc3ECwnCH77zc27P7z/F6bvZy6Q JEd36VIiPpGsXriwpovi0oUrjCZfZK/4hMlOOkY36MR6z8Tw35Fc/fbDm7+8efdzpS1/+YsPb77a ZI0WTZH/YfIhFO3/q/2/0ElD/vjx5p3STUL+7NedzC6Xv/6CML5499Wz97fg+bdYqCSq70g0377/ i/zW/uZf6PHvvhHq+fuXND2/+/DmHfo8/YZ/KV/+7u139NMvPrz/7ptfvvv6/emnopZ+9+rjX0mc b9599S3pF4HJ1wt5gqCfv/mPG4FdvnrzzWf39veHD69eE9qL3/75f968/kgPK2D764vv3ny8ebij L16DTR8urj989+1fL/7w/v3bRt/+p0amghmK9j8OHL/jB9799p1w+ohJG4yYaHH86LBQ67sx0I8/ 5t6fvXr79s1fPrz65q9vXs8QTH5vmOS3RyCjNU6qvD3PX+3fM8Ty+9s/v3/75tvbTRo7yO9ou39D 2/wX33/78eb24d6e33xN22rHNoa+ePcfN2/ff9MR2SCv3n118T9effjmvq4xTV+/efcVrRBezxsb 399+A5Ph4ou/vvrmhsn9+NeX3PKLM8T47at3rz5cMLx1CfVD8kv6bK+SBNY6jV+SYuxV389+do9O TBfX77qff/Hh1VdvSNuSOcWa7uari99T73/GTnyA8O5x/dXpT6f/dnr58uUL/jynzzP6XNPnij6V PoU+mT6JPpE+gT6ePit9HH0WfPhx/PecPs9OL569uObPFX0qfQp9Mn8SfSJ9An88fVb6OP4sL5bn TAN6eY7/nvHn+vT8mj5X9Kn8KfTJ/En8ifQJ/PH8Wfnj+LM8X57xoJ694A/3eKL/kf+u+XPFn6qf wp+sn6SfqJ+gH6+fFZ8T/+O6z9J/rl/K5/R/ErvLUlxZ6eNLKLGkkksptVyVa0L7nFj1si7V1bX6 GmqsqeZaaq1X9ZqIw/hf1JdXy5W7Wq/8VbiKp6t0la/o+at6dXV1TSN5Tnx/eb3Qx12v1/46XMfr RJ98Xa7r9dU1/ntGLH1x/ZLpc0S7pyFheOlZPvH4K3Hkmnn0nNhGDCRWOmasJ0aD5YkmAFNReWqu mbPPaeZoBmkuMaMrz3A40VRHnvrMogCRuGIBwZQ8Z8khCWJZgkxBtiBjkDXIHGQPMghZhEzWE4un 8FRmVwTnhX70P2L3Qh938ZMvrz+cHPF+WRa3rItfwhKXtOSlLHW5Ik49Izl5QdgX59zqvAsuuuSy K666K3fNc/qchvRyXVa3rqtfwxrXdFozzWRdr9ZrEoDnJMsvPfXunV+998FHn3z2xVd/5a9ZXp4T R16GJZAtF3wIIYZEnxxKqOEqXJ9ItJ7z4ngZl+jiGn2kNjHGFHMsscYr+lzTTD2nZQTeLMmlNXn0 kmJKKScSqVTTFWY8PTvRAnnBDFyyy0Ru9pnQ5ZhTxn8lk3zlq0zCwfL+nNcpmL3s2ceCC9E14YX4 QoAhwhBiiDEEGaIMYb7mdfScRfoFT93Cgg3RhnD7E8k3JBwyDimHnEPSIeuQ9mtejiLxLzDvJPWQ e0g+ZB/SH8AOWgBYAvmkqwDrACvhmtf1c14PL1hiZE1gVWBdYGVgbdjqwPrACsEa4VVyYvXwnJfK CxY2WS6Ol7vnRWPLJrG2kJVTWZ9ct/XznFUPiekJ+oj1kiwkz1pLFlNijSYLypaULarnrBJlYdnS 4sV1Yj0a2/LqF1i/xM5eZKe2ymyJ2fLShcVSoZvGc94srnibyLxBBN4aHG8J2A6e8S5QWf8n1vue 9f3CWh4a/prVejmxNo+sw6G7F9bYz1lFX7FSzqyEA6tcxzr1BTHoGU3TFc1YodlLNJOBZnWlGV5O RP8L4uIzmssrEolCEpJIVgLJzUoytNAYXxCnn9F8X5HMFZK/RLIYSDRXEtKF+PCCZuMZycQVCWY5 kYQnkvZAkr/SKliIWy9oyp6R4FyR9BZaTYnWVaAVttJaW4ijL2han5FwXZGEF1qa5MrRMvW0YF1a TsT2FzT3z0gCr2gZFFrhiVZ6oDW/0tpfaGpekHw8Iym9oqVSaN0mUgaBFMdKCmSh6XtBMvSMJPmK 1lM5ka5JpHMC6Z6VdNBCc/yCBO0ZifsVLbpCyz+R2gqkvlZSYwvJwQsSxme0JK5oYRZSeIkUXyAF uJIipNX/EpsydjBaesQS0piJNCehJi3qFlERTUEsC+tXaFjoWGhZ6FnRtNC1om1F34rGNZ0rWtf0 rmreU1O+z5vy7dUvKWDVv70GFh1sGning09Y8wclbGq4KWHWwc8HHTzVwKedAjb1K8r3mWhe1bu+ 6dyi+lZ0rejZ/3YCq/xL/bzQj9gzZmqwxvKs+HzlD7Rw5k/iT+QPhuRP3rMUQA7w4fnAmmcOiYn0 jCXjmqXjirkIGYGUQE4SywqkBfLiT6v85yA4LDovxWzjyXnGQgQxgiBVFiaIU+bZjCxUQShBB5jw EyRFzEcWsudiKrGoQdgqC0xmkUssRswjFr2VxWxhAXSbCC68S52xLh9Ymf3CPD1lZR7Jekhf3qkx R52pWvMkapMt4aT2r2rOTnea9jT9aRrUq7UqWpT16ElVqShTUaeiUEWlrrxxLtgVWK8+5831WrVr 5a03s44VLRtOLKkrK1vHU/qSVe4L3tKfseK95q3+ijf9wio4sxpObBYE/oisk2ieRLCqyAbvU2xa vGAj47mY7Wx4XLMJcsV6Gx/7L7cPG0kn1uf2Ce3ju886fNzhs2yfU//lrs9eNv50Wi5zbHHDuFzU epmXJeHnL04/+fKun6+/pS4QQpVffL1caL1eFAL5Uu3p+5pID/pjiBdpvaRV0j96/I2ekQ6d0RPy ZVpC2cid/orniJQ12k/pkpZJuPB7cu9to320n90l6YFw4dJlSNn1XdzVhHvQUOnFSuwgSaK/25PH n+iJ6+fNNTcXe+51f/Hx5ubtxbPv33KogJzuAUDd1Z3P/Q/z6R/m02LGE5vr4g2/ZBN9ZeMchnlh a/ya7fAXYoHbUz+E/cEenQYjTo+MRgyxCPbDdmGI0xCF2GIQWwRiiz8kdqEs9MCBBw07SNCBfKST RhyuLdrADhGcIQkyZPZ/rnomicTEHeP2wnmvbJ4lmScRzR7FjreHME/f8qwAxCT8MI0+kOV7mgYf ZqGHvc17p8V72kIOnypv/bj/oQX/19KC29z/CVs5DATSgt3ObRA1TehbrpeEY2eUdFA2R6pLNCz9 wV3mutkw8x/5KQxzTfIDWTe0VML21OxHeaoUkn75IYZLGn/snpr8KAZTxEKQH8gKi2QSdfbS5Ed+ KlQSlig/rIlp2p6a/chPLYEmTbsju4eWd2ebzX7ceL0MXH6c+fPHd+9e3d58dfEXBV1UTzbQDEod BzOE2J986HP8z+8+Yfuc2GeNGh2QT24fMeKrftg5UQ9Y4vjiF7+QKAJHyJYTq1THAYWVneqgYYXI PndmHVvYS7liTWuB3ufsw79knStal6MNpxB2cd/Cbg5UcBd4UEW8DwCbOq4agFCNfIJ/PIkC14li fsgU4A3rhB2LoxLLY/5z9344dnOSf9rHHz5h94m7T+o+WT4njSsVjS7Z56p9rvWzZWOe6+eFxJ/k Y2SenNNwlHy8hqUC78hRw1MSosq8PxfeoyuHPq44CHKtSSCOWp04RiIhVwlfmURvsrsJqwnpJqAm nCaYL0+Qy8fPzhn//Sd3eL98nPU5PfHB9a7PKJCP+RyFlz4n/h/MjkbHPvXz0j6n7c9OnI6fh9Wn qs3TUXuqLI4KtFehuYuG1L0qPTVtumlU06mmVTvNqh/XqVdTsapkT6pno8Y3s35K07hV46HXTe8+ 06jpC9O+qn+hgd0JI0QAxizQh6yhxxlDMu9bxHOLdu5DnVugcwtz7oOcLcQpC/2x8n7/qkSXLQx8 DAKXXRDYQsAcBG4R4CEG3LP0QUv2wZDr3ow93WXHyjiM/jNC2HfTv8WwT7swdtnC2DIR/Vp/uua4 Q/30ig7YHoj+V10HeZIDiGql+JYGWOEWdrkAzQZwPmCbPoQjo6tkWF66khA9JId05agcWdFutNjP actWqVtLknjipXMx069kjC8OkUUY5WT/ti4fbso9rhkFiUvJCf8s0TMZSxLEZBLTQups8/Oai91d MBaylDwPicxxepy4bUO6TDm4zhI/q/mnWdJhakmHnSWtBsjsc919thoVrZDZ7zTbJnJqO8feUIkH Q2VqprRKCGdm80ljEqlZzJu9rLZys5T9oThikpk7HUIVpdnGfazijmjFQzbUeabEYL6eprbrYLV2 RutosO6NVTJTT81SfbGzVHszdTNSexN1b55Wk4RTb53axDfLYZvx3jDtZvtHYHn+JxqKd871pxiK eJwtg3zWZ5Jjap/af07dxN694Psl3y/7/eJnOThNTMuZGXn0vO9wuk+dubj3uq/utRJlZ3r5n2ep rcupj1uNhltvuo3G29l56tNmxT3VjnvAotstm9GsG0260aDrzaHeGNql808a02MjqJ+OTw2EjnHQ UwuEPikMejQfTw+FQcXE6g2rWVFFV1LRmVLHigrl+t4endnTSdfJfTbpNhHPT20uxg== 4oqdXbqFTKZe6WM/pwHwAxu6B3NXDV5m9soThs/C0/aSp+4FT99zrb695mm84qmsmrbnskY2GDhg hiDbSYxgVlESw1lanc1WYbPZ13fX1qgYnB6Sg70lHdbCdmZyga3OmsVWXieW9BltxZJW23ip9EMq ZNJGspD9JUl9Z+7e2+oM+zmsl873Wf3zmnPPKQbHNnDgkTj+5tcY7jCgz2z/GAv6f/z1zceb/ypn 88h03n0lvqz/SMP/r5mAeigNf3Za6tNSJb08XvyewK/eDlJqUBSj/ENY/yGsc2G9TxgfEuQ7hfUx R5D4aK0c7ZTDeTjL/eHNVxfv313gX5Lq3Vco84CYjvxDG9K66D/kzv/ky++0DEsqz/71e/76z/Tn /yTg3y/Cxa8v/vTvy8VXDP/X32PIuw5vN4h2evE5gfZ4epA2/vzQEyDvGM1vJXO65hA5xmV/uFAX JHv/xq1+rwwG9b+Sbe3i71uvPl0mVO11BAZ3WbwTaly8JDmPO9iK8rc1XXh36fMA439dEhiS3N7t YANWgP5M/8/dL+6C0XmhhmFrP2x+ClV4G4j7pgcYV3B7mNLEj4JWvwONOHe0rDvGKKhnQsiXEP8d LGYJO/aMMVjPhLhernUHGXAaKSwLfs+Wo3ykfFlz3rGlYe3YsqNEeZDWy0zWUQ8acRot2jsji+ku gTZ56WHWOyMbYExU2stLDxuwjvKCWYj5zkkygTlIL40Lk1DKAOswq8T0oBHrIDE9axTUs8EkpofZ nPSsMViPWSTmQMt6YIzNXs8YlZieCSYyM+ntGTOjRWWmB41YjRoTP5vt2ztW52wVmyTdqwgNgrah k6IOp9HSLTqlZLYgZgvHJq7De9RNBuko2WM0OgZN9BBLuPl6tzjPVNNRmUzU35+Py/8hpvS0zCRo ImgK6mmZ6JxeVkyuesbstMRk/c52qdlmpiBIad1LS49hk5aelumynCyZ2cZw9yT1tBwXeScv57KF uZv28rLTQhPFdFQlE+XXycu5bOlpMXk5z/rpaZnoG9BCdozWjF06+meN/R/LkkvwbAG5u6ydmaKY 6JNl1qCX569PYoaRoV7Z+nKOYxE5gQi1wyZGxVE9THTIXXbLOiHhPH4MKxKUFH+Jq1wOVsCeEXfZ ClNuuJoW3M9Csk2oL3hnZ1KYhnEN3z6wV/eK506LdNAJX0/W5+0DW1+P5z4Db8SDKJTY3lEn/XI1 eWDOu92wTfL6YU9s2uWufXC2XSoZhdAiApYSKOqk8NLJH3+bbHI9WyZG5HLXLjjbLIUOT0sgsCi2 +afZD8yPuNQiK/NoUc7U8URrLw/ZiI9Zkz3+O+2sHvtdluE6IeEsRgxKr1uSByNrz4e7TLEZMx4l oYze7yX0YNIPu82dpn/X31MltadntpPMdpz77O2Rnj+eXkjIAPc/ScBgGkL44uOrDx++v/jib9/z Kar2Bfd7OZRYr54QOCjOhCIRUuYJKNd8elIMYej1toNZx8r7Ad0eas9/PukTsD6eUDmLAEENLKAk H9hWuIZk8XVdZe2OXd/e0fWnkivSUmkRLVjAFbsIpGVNqJqAtAi9TBREcME1ZMlfLiFXoQp3r2VH miuGS5eXevGWlQaJQPaFoPTzWqJASZeUQv06kp5oQOQqfL5EKExbpUtaMYQn+EsfozYjskuq5Dn7 crm6WBTqFE8oJI/e2iLzga2enqm0QKTbSouAhSdc5hqV0MOg3ipbgNCzuZKwjNQnp+be07MuRiRV sg4hX/qlUCexSg2QjXaNHm3dpStGxrJeJuIqUYyjAtqSpnEVEK0voyxc1ojL7Xy8RP7FBkGtiNsh QsUZF/Jlzj4wtHgbGnjDexvhj5lm/u1sWDbeHGn6yRhxC7GHcIhzS8Qu1EVFv8qcFEhUU7moYG4Q jmdHY6n5otD4FVGqxKmAIxtLWWScOdEMkNosRDtNIcMKcYG+oF0pq4ynrGxSobfsF21XSEKYkJgM hDwXqf+KY56rEHcYhQ0POilXuLcr0UUK91Zap1TrRc0k8U4mk9ZMggXmFloPi8pZJs1eaPx1xeEJ YRppwxqSx2hKlmeJXWBtSahmawStJeBqwssYRDBoqAGHOKhZdqnY8NySwkWhZsvauOBIqIjPa1gV No6iSSv1WSABHlJu0krihGClQ51bNGGjkVQU6kEPBJUJ4i3a0cqL2QuqSu3WhYRycXJz5luxIHhG WLbXKvhpxy6FNkoQFUExtyy0PrAwHfG2SpdYuQvZH6Bn8VnoWeNlXmlxQIh9XVTOx+HYOAmX4+VK +yZt+l7GCRnDomSkuihofwqhYvmQvEavK9WJqGBt1KwzTrsGwSOtYmlDEplovQFYbGYd9QyRrBW1 fgJboUcKhkj7YtbJIE2WA/PS0/LVqSS6aNcFz4lDUdfyYSib5iEpcyQMtLcutZrmyZeFjIoLUjEk PLqYScorLTycmS7Z1A4xFPISKslvMuAqph8xgw9GybQHORlOejYmpR/aZoVUQuuQ3aNAYtdKayGS zrCGZJVFTCIRxPFY6ZL4E2m+SLnkNejT43jaQIma4GHokLCtVSdzhTQWVH3W1ZemSn1mu8tj/zD9 yMe6SBN70txt3/EwKAOt0/YwrSmgJeW4rjbJK2xK2oA9LaTWkubJedqPAs3IErdxLqjypD1rLbo4 mCEevgpxqQntOBwbJ7ZhkkXeumLUCU0RyW7IJ+nYoIwmXsZKWhD9kxrLpnDD4gKL9xqF0bRbyT6w QqKrNqRtr2IbojXFOyivAy8zAr4uS6imr2V1YsXkxZuqKkkpCrq15UVuy6Udi7rRtX0YT9tDaCEs hSWaV5calD5hM/YoQ3DFdOcCmxotl1X1OY2pFigXj+KARYQ0FlqE2K6gM3QfSZhIHhLNU1JFS3gc 3wRMOoo4420TqjR53DIm3XKg9SM0A2mcpbQNjJ1s4K5OpXkcTpNbqEQYJuhhJR2g8XoujQCpZAmp QNLOovPksbXLmEiJpIr7CSCEq+oraBYufiBVs5opRIh4uWJQfi1mQpCG4u0eWsmZSJLo41wfq7ZS bT1ENXqw1kmlNhuk0J7CUJ9sQR1GtY03yCbOG4mvavlR+zUyRlIqvui2gX26VpZBYmSysYXMOt5j LemAaftD/TjGRuvTRrwYw0iDLGtqpJH9ytc80waYtmGk1UkPZDqHNuTEwgGbxIfGHNbfoGD1jY37 UW0KmNQHOIHZg612q4YT771VxVQ0BgJDRC426RrM8KLFSdr2ojoUufimBCPmt8BQDfZ4pNHS/Fb4 ZbZBmzVHLZsOAI2VeF0hMTbjpGzZbIElVlxpDVGfeVFhWC3WchjQNlIY4sQDmgwWqVttzbcoUxfB 5J7FChNboyRTbFCVXELYRdtes8L/pI2BBhW8zSC4x4zCrR7JNbISppWtnroNADlxtMyx2bIVFyJj +Aupu8YnNhNp+J3pPwyoGQ7YzmgPgjIlWRTfm9BjwSZYOKEZMzQ7ERtYMhuO2vF8ki6i/V5GCW2G 6cTuU3VDxUYeakDEgIxEZzYPTya1Y+lRG6ESJ0nZs1ADFBaZygShDcWa8UwmbLQ65+Mw2vCKDJt0 KFsat9IWXj+eL7ZBkmqvOEENbycXZ0PhSaQh8y3aygaeQxoKm+zKBmYNwdgTU3pSJAUbuw2X6CbB cGDXUnRWAwQ8A+SL+ohEMk8fofU1RYPthmHDI/vGlwovDabWItZ7hKXC/lXFUW0ZIPmbLhd4eTRZ ZvPC44M14iIuf9dtIAbZ0eAl5lXFnBDRZpXYvytO93BYOAtUCh4hL902pujXlfsMpg9g9kANgCRy /RQ78SvC+iMg//F2NqI21CpL1MEA8otsotQaV3Gw09ZcC6I7oIYOLWnevI1KFB3os1UReZ/xHDdp U0IjVE7B/vSNLMdbE3XuVPcQ/SlGebp56Rgp1AuAGUa98QQE0b/ZLK3DePqBRqKa5jyRq2H5Dr6T n8SKV5eOqAZafSR+bLEpSQEGr4emVe8CNjDJA27xSeQXGnK2BUics6KG6ZEqN2uWG1Ydpo2683iL gFojbKoTKWFVN5CVAoknVlawMQ/DaEafY6+dFkOBAXUrTdkUg9HjdFFhZtnchnW5CcwKkYA9iQiA zWvhgTCDtJkwZt1cbJZ6L1cZRV3zRDUMali6ixobyYsfRLDNJiMtSF4Zuwi29oZB2NgsvIroJq0h /BEkzCmxX2gZX7CJV2g9mVvvxDvEpkcjVTcxi0MNYFPisMHWJJv1UlwDslaB0ZODcsVj2/Wy12fd FzzCARFuGdzCYGoqSkN6oJg+I0OL9AbjzrZXeMQNsNKwDdl8HsbTMQJhXilgdaQpETKLqSRvnKDp Dcg6wQVsMV+YX1GtUmEDyemyiInfnFU2g7NYabQ3rMYw1pYc3TG3gVhLitkxMKsVArciOeEXe8c6 uhA5IrA2a9rD6XGFYd5mgPjl1UDMCF+8nY3lXHFwAW4vSS1JJ+2PToMTZNN57AmEYjGDAoHARFOP yJ253rR3sLsBLWYbBQcGsFkhkmiCDjwVgYyIyJAZRCGxGFDDYhs14mQE51RT80gRlCzYnHipabAL ITnsvVBCed3Q7IZztjRwfC45zm6E3KI05G4FMRGaGYLxLciqQKuZSgIn1gyjw2/+HVi2IDMZFxGC t6fOaY1L59oHhGppFRBH6rKENsAlEV+oZWnYiRU5guEu9CyDnotw49rUDOM5WyJW3TzJlaNJCa3g aeGdgiyCRZlNSr9W3lOqJBwApM2Vp0/2M50qMi2WjFh4oJ9zNoGip6LsZ83y4FAKp4J7OUnquGBn tqAxXBO4p7LvKsOjhGscb4HmqY0DOl8msJVBNcGkSxbp92mVLbOFumlPWGEOI1Adg65n7K3UP++4 3nRq4Fis5zHX1aZqYfaIDVOKmdD0PDRMQOCsrSIyF+H2xiBrURnhhWW0EFLeWMZ6mrA3XTSM51yJ KPCJV/FpNUICrwBbAkJpa1a7G1FRttrwriFzJErSLMBSt12kRCGfw5JRxakibhkR3aVZhiHNQBpT Ae4F0qJbH3kVERYy+vRm7pL/xB4DSOLgHQNX9ZsdPMQiiIbxnC0OVQN08HQDdSucQEAJaWynnghj IM3EYVdEbVs4nXR0qpGDl82UKUip0pRj0HVR969A08JQXPLmkCJ+n1PgoG+LC5HThR2a2oWgTnbF JDPHYIP4jWMchiXcbb86jOd8FbGKxwhl5GMx33TRNFCA86+6iTjAoTmOSW7CrbYydKlz5vUjg4K1 RaYDsX1LLrEeQainmFiwgwnBQWCPU2cCjZKpQLeNxbAM2LpibW6qkP3uxMke2plazmoc2Pm6ggyG jA1ANrVSW8SUN3Xky0qwqGeRaCd0tF9NHSIJhsWJ/cG7LmIMGxRbSXOPOABTOOGGiU9bGGOtqXKQ cNuYaJzsoqIt+5zGEz4ehDihs4Uh/IPfQTQ0f/M4so0p56UnK4Q84dCTg/Wvy4YdbA== Mvm3VUNbJ8LKpLybMVEQcVvZby9mIZckKX7cJeo00YGFsFa2WFoEqCZJaSLHZnZIjYKD1CIxXDUH 9IHQsiymvYPsr7hqzCzuYRjGBbz9Cv5k0rV+K03Z+eFYsHoySEYFRMrjtn4LrHfHIY3mLJEa5SlH GtPSiKVKfWmEOJRi+rJi0SOZYKYOrXOc5OeLWp3KECJ80Prwn72KINgAhw/+R9KtdxyHjQ+2JdKA 2PIcnE22k73qZXj6XqMdHASXvc20kcWmsZ8Xi5ghK7XArGUDJ7YIDceUOF28ao8kh2LyhyBBYAYu HGt38iYuAQXVwjGKXlDrmeUEwBbsO4zGhhmglWH5Iz6QLE6TNPILhpbc3B1NoNPeihS/2fQIdGD0 a9DNb5XMouzhNnhEBDUtTvo8mVGPixBYT5jHjoBLYl2EtaLLGTYv8jUA8nbXGMKBBYRS1Sw4jMcG imUMj5u2Aep3UUWF/HZh0ylhxameRoiM8+RkMVRLxVhOCiwkB8Q3C1YjMXAXzdbNGoeGibharyg8 gBRLpl4ZCAkRAYBOSGayoDdIA+jaouShSmAH0BSqOQTDwNqI4Z7wzoRksWUmQ1LHE+mJ4jfr3OHy P5eIwc5tQ+baP/BhDRZ3RZgMIU8nuSGjDZs/B2+QIF18o00SAzDyvG1CoYqFz0Zs1Og7mkhMCEGN FlIHfzhfkBBHsv11HNo2ZhJ+8ovhj8ChUOM1IQjKq0UtA+QeaILgN6lHTSYCLgtAZIG0uln1JNuI zHQxR9xWuJD1QQJttSVrENlH6irp7gl3NiLGUTjUoXoCVjKqLEKzYYmb+YI9GXN/hhHYyFYvWWlT /7fSlvUEPV+D6tHMRgQnW1sgBSdX4VBbgpRxIyeDUz2h88ewbXNKdnO8sFcXrppdrfLBqfGHQNQS mhLkSDMizkV3J/AAKa7gNqt/HMa5xleuwhZafOx0cbEEfMLCWwaLKQ+fcK6JHVLedhiWUINywStN mRTFlA4INKs64dvIV/bfq/dt8+J6BYiO7ZFk5fLSjOrQ2n6NxDv2YWu2MrbYlYeMYzjbyipRjg4h eAif/1Y6490EDqfpqKzBFEQ9bS/L8CJRYunFW2YY0gtwu0ur7SBepoSRFilAUXo5zAFT0UL7Bdlp 2p6D3uGuo1+QI4bIlY5LiNdAjJ0GvcdhnG14L0hpYE8oKBtpp5FgPWAzzljFaiIX20+R8o7mLxQR CujYterOS8bAUhCOCrhzyWqcyCFJsMx49zQDkSxXjztUodhTNKsZbimb3Vyo1ZZQkCIkUcem21C5 IVDf9NVxWIC+PEcg2HfhIATEzHvLfwYRMJexgtU2WpFKBBKS7yU0b2kJUo5HOqJ5pxx5Qvpg0eoe MqIUEpxVHxAS8d2weGrdCunYEmW/37cyniCzL7vx2vjGwR6y9rAVbTUR+xE9Wjrg5yDctBMO6OQm kyoba2diNtEoW7rUJGPlJEYYBAM1bDnuBcMja2gS0OSiXi4t16pSATUZm+OnQrHWTgWPozlbSTQO wnrxLYKlIuERTDMPQUWCdHW05JFKBKln2zSaPPitNk7lAWs67aVhGcQgSFXiIAWXOy6xFMBRW1uB 4jCEs2UgId1ekaHd6kC9VK4Ut1WBBvYZuAZwqwFd5VQKYqw217Tn0SSlsOkuh72GMKD8xCpAkStH agrVH5YiRf654oqLuOlHjqWTU1iWrfhzpT2AzLriusrPYRBnzzyi8WRml7xVhSYJ1Jd1qwklxc4l oQjIbBWhtA/Susxlqwf12P6IJFRQWniSJjyQKGe3+U2IcKDEjFSqLQfUuSDPgT3Y1he/wYK8UIK1 OlDENmCv5yLY3x7GsA39zEpgpI/YMdtVG3I4/FBuSNYSCg539YacSBwLDtmxQKFQX3AIO/RYcehQ qnQoOeSdaaw5hIKTE7d90SH2q7witLOrOjyMqxm6hHBSd4it6FB4CGt5kfKovvIwxknpISpU98WH scyqD/EelrH8EAr9WH/oIOOHAkSX10kF4nFUZ2uACD8e1Va7AD4ixss6RPDhg0rFaR/C59lG2mIX w4fXJg7eLogfNUS5j+LDM4TiGML4yySOz+4MDOB9IJ983hrHSP5haOfvCUjEo0Ckj+WDjOSGYD5k ZOWKhD6az0l3RH124XzwTz3ZPp5PvN6KElrMk2Myh4g+iugOIX0Q6YV/u5j+IvnufVB/GNmjNUas E08RwSLEv3pXkSMzhGrnLCL+A6+09xZZFogZe2+RdD60bucuYpkc/EV29KE0O4fRcfX2zmPEaCcu Y537jLDvWKnsnUZSJW7de42Yfjlm17uNEWV0qD7t/EaYy1xztHMcIaKD31gnjiNkC7ZE7zmyoQym 964js0OP420SNg7nfPNgkarknX2Aw0EYam8gYLI5rLizEFASMZgIMUxsBNwLSz5fbyNAr/OoeiMB oxMsnZUA14B1VW8mYMnj4MjeThhG8wh1UHh73VkKi1a8daYClB5P/M5WgCs7GgvOvOXeWoC7gBTM 3lxY5FROZy/I0g17g8FxTbYvO4sBM89B6t5kGEZzrjAEVKXiFEvUNATf30AUZOhERM19beUYsnkg cuA0XE8CSTyPEsi07T/w1WAS2vVF11RACAKFwlgxtoBxSo1rTgLMCPU6OcMgKrKFHrBHcciTKAqr IY+szBhYltTw7Ad0tjwgclj57BDiq8oJVmKVz0k5ky6yPriIhyvTFjUVkC1xzJw1qaMCdchHHLg0 XdkY9PAMZ5e04JCwSKVc8Ju3hxNECwwSuNlBNxAEJHAkmSWtrB3DOATJFZ3OgLvRnCsQCUEeRNYh hli/XCQe5G9W1nbYCTvRkiR2Soq5FYnLyRD0k1W0kUDhUjbE270VcEUtLUIxYdahJA4RS1hZZSRp fQx6TMWq5heLjtLyS5qISVqXxa50DA3NfjxnywPbb7CMcdE16cZ2LAC1vMBhU4rKOUh2RmW71frb lCYu/9AiMRMc8NMbGwPjZ6DtF6weISSJL7JuFfTsKLBhUFv9fyqIcbAd7hrDYOxKTFstzMNgHm0i aGCdfXazECxhgKyjt2i05QvWpbMGWr4ABWUtom7WZBcC7NIFl1u8oWULXK+XLVlQuupsyxUg3BqK IdJUAVK7zU4YBtTMBIum85kEPYnWEgWoHd/UveYJyPVNlmlraQKUWdu5sC5L0BkUW5JA6rmNKskR LJ07tKUIuoDJliGg9dMMV00QoDJm2ayZ3YAeqwpQ9JbDXhMgyl9yqzVlRYAzFLpFmRrA8RfLtjct kKWwbKcEULjnBh3QF+6qEuAzk4MOwHEOC9KaCkAcpdVXDsN4tALgOoOSduufQ1ian9b1D7faLEhb /nDunW+VtlL72c2sLf5Vj1XsF794u/3aX7tibFv7duivX/sQ07wdO9oNw8ZPNg6faYTMoPiBU/KS TsXeG6LubBnhJ2TfsOe08hRCmoPUA5BEN+CK0k/ex9yWyuYYORc6KEkF5fEIeiJqaoeBild5xsJc U8s5sO0FiizFXFAkukhKNa1WXjaM5lwhxwHXEqXYbC1qB6KKidOCsDuCpUnIU+AMK61GEpJiQ5aD SSh0tPRfLlIYjCGTb6ktee+Tgg9cgmhATiaAEWu2yKyXugQu38trYwRLtJPDbxvHsmPk2VkF1jig s+W9OomEYhp1u8MZEVpayC3ZoUbkN2AcEmz1GpPA+RiEL3C81w4FoigKy40PuFl5l5OtPodNZFGu kPWGhazWddX0TE5dUSG8YC+0aIil4qx2YFJqq2DYD+JcMSCMyZHVmZHxtcE7qfODiZ9zqxvjBYZX 3VWTx6pWf5JTmAzLUpibw5YtAjNBOvwcC/JWJ7LMASC1YxCRhvjgbLJV3tYgdSwZRRu5cc4hS5Xz 5jCM4zh78hHZgYfK1SpWEE8MQIwLXpGlFAPXy6Vly7NhweE4DU4VFNUEsEQRTYtRKn7fCgbefuBp WkAJPjW2bsRFbE9AwCRw2s52Shz2iCtXyEQrheMyB8KAkILVvo9jOHfy+VAGrci0bmW/sDiI98hO epV8FNlkuWejFe+jpKUd+1UzD2opy00q7WAPWBnl7FGxI7LwKXA8MsYt6oOoCbQlDufYXo2CH1T9 xS4rEzVnj01lKdsZhH4YZ889TsmhFj24be5RicbXG5Vt7jluy0cp2uQ7BDZIzlC5Y5OPEwBwPVAf ZJOPukBcco3KdZt8yw6gfM8mH0XumZMxNvnY3hGLsVIYhjnxhn3ZJn8cxLmTj9PPOLcSlm3yYT0h BlO3ybfkVli2yUetIsqHUFXXjh6rb46TYMvWjotNAbPJVwPN+66IVy/LQMFRy5YECTmiZMnmHjxC Sg3+pc39OIqz595plSRC9VyjcSuD5crhqjlvMSP5VFxFSMjs0iL84bJbC/HIDQnQV85iOVXu8MBF ENXkASd+SMchu2gHsTgLhJOFWQwBGxcirShg64qd4d3hlet2LuwwirNn30l8l7MaZWmyj8xTlTPk NqscqMCtEzE3IFfX19INH0UoiEaltktBchBfB8iO0RKChQ9wttJlWHa58oO1DRQH82PgY6FWGchM KjwPjcGHQZw9+2HVmhnCjgIRvb0zko3LR57aWcci2tanLT+JGlWoIAQ6S2lVaLiiH+eguASEYZrg wukts11hA6EGB4eOSqtq49JeHzczNeCo4sKkOLdVvzkcAfRdwfI4jHNnP2A3RT64Sv5Gg1+8g/rN zkC6CQXuKCY0j4RQFbKF+Uzp0iJkDgcwUbq8FeAJ32DkuEYsjkcgCd1OqXHpTeVHqy0RBMfWwAfr VlOtYBJtmKIOjL/DIM5f+kGPN+MPdpHE1fVylobd89Qq2tSbh9OLFzYpFH4euwHLVu6PB4vcSpC6 0mQgQbqZryUIfgsxLylJ29xizAgCsAW8bCYQ55zEBF7lZJhAk1Szuz4jcRjZuRLBp4yy3PWTrNBV bvNRlpRoZ5lBhlulMNW1bJrXBCECgqW4xj0+OOt4xwpbUER46jdbB51J1NB35/C4LAeFS1ws79v5 nsoeN4BhtfocBBal1N1tNy0cxnW+ioDFi0uhHL9oQjRkKHrgf4Exp+HFEGUG+ciCtwNCWSpc+aoD O3SK6fUQBdx0EGyx40YilCAtyDdpBRPivZ5vfMaJ6M7oQsU0+rTTgtEuG1jyVhkZNcwOIPlu3vDs B3S2mejs9EXlko9b7YxPIOGkRdbUGxxYJJgX7JW+rWZOQaN0pm1bbUngOqSwmY8OXi2ApOgaUERl QR1ObFa25CMXjhU3K1v2gijv7mgMw3JY0lYIOA5nY4PDDZZ8mTpGD9Godm2fiAivFJgffPMHbTok 8lpmkmWzw0mG4u2kBomyBD5RLOmsHBZaPQU9MtqyYl5JRJXAVi7MNiewweawoFqVu2HQshVH81rK HFQsW5EP6ydewbBrLXDr+FAwirMJWkOr7xgGdrbugL24RKkhWBAMMJbwmQ7EfUxDeg== fje4XIaSN7SNxNUuPmHWYRHzBUOpEa5X+WGQztsaxwYkVVk4reE31kmpOhsi26FNPmkuvN84F7zM XQx2zuQwqEfKia9b2UjSc+ToE7FdMrFKtqwKDQn2EWxOs+AQSmZTp22eyELhqpLanYryagiies0u kcF2hXt3etMJeSm2Q8t2dRLvZiRtoMTSJNh04JPDALQA3DiKsy0MLTbmK1K8Lzb84PjAF3i43UwF +xqwaFfu8NQJdVsrPjhS83YPDrYE2B0VcQrdmQlWXGajs1ixDsYFowF3wHiVLz5cEcuOx9isEG3G TJR2/8V+GI8Vgszsy7LbCBOyyACSNeZjwDuEDCQtqWAYzGZcLRXMGIdVARlIcVMbWGSQgdRZEZBn yEDSi5OMo5CBpAtIecVcToVv6NFmLAJIqpozOYzhXAkARrAuVSny0LGzACA0m4wK8a84Q57bQIUw THbaOATCktRsK2E8/yntLvng+Ufwu8mw1mUjL2TXZ2HtYP6Zv7nxjec/lSZ1wxgeOfuIVK9ySVWK VSu2Fz3569cug1d0E8fpoODbJVF8eNC77fAo6plxRQOf64stH5D5vgCPigONxK6aXEPVoRnWuEwK 97KiR76gVVtmXJHI9KxWP++0BMfjaLYq1HE05wpCtrsw4fOvalpmPXwFDN64UPn8Dx/hc+22RqXO baoZ3JKzkrCS18YFlh8AQ9Lli1QJok985G9J7ZIxCczDEWnskhC38LpxC6/P5TnJ24WS+7E81niA aUR7LM6vwUK6VRjbDogcL7bx40wsTAccFmxux1LEcsAVTO3KgSWL4YDTxq1yBieOgajk7jgpSlqx UEqSe7asJdsNuMmyHRBFZhJ7coGhbZs3tWSrAWeI7VzgOKCzbQYYodhe+TqlUhonYDLggs01b8OD yYBQe2jV50XJK1sZCRgGgwHHs5tHthS9+jfLOQkbB5sLKLgPlhXF4DCzpb+wFWyAtbDndxVzoUgw 4+1sNB0b7Kbjhb0L+oP2URwxMr9Lb2v0VdK/Lb+8yOUtaysA5JoMUp7YMLc7H4JkI1iztrNgml3j 834bjBN3HGE05ypK8BJWWYvZoTCWq7O6uxM4O8v3z5ct54iWGhZds9lS43AaI/QCZPO/OfGLjWpV vchPMjGlu7fRqmd8kX8Nh1xtA9eua8lh29wuV5E7MirHC7f6qqDVbHy6MW8uOmc60LKl2UOyHtu5 ImYO8ppAHet2BcVuOGdPPu95fEIfkW5dBJy25CP12e7bQ8UbF/zwzalrq2xgdYx6WtXQCWIKdYfK 262yhC96Rbum8xcJwKNdUwRJI+rcoV0TBp2Pqjhgpidal3rbACY7N+W9H8ts5oGYL8igRnxG6Vaf RHkHTky0m49w9JlN8ignORXIFxGGrQgV5gzKSfmOg8W3/YHVB4BmyCW9twRDjuZ6YDfl+l08bYdZ cZawdWnXyTBznCLPpW2I+9Gcv+qLhLh4CRU1DHGHIN8LgDXdSsqT3HQs52zMOcpas40wVIt0ILZQ 5Ez/2s7eFL3Bed2OJeNEilRi4WIdqzHH7UWcUvXdAcsq99/xirM6bKcqlZfX4lusdz+g6bpHGJHP 0uOAXIoWcpfqnrBV98ADznrxNK3wloRpJ47wqj5jD19tytUniykmXNCRJMtO6jsYkMOsGPViRVKI 9/PVLnjcjB9c8tv6NAuN+aOXGZQSGyv2AzpbAFCCz9GKhGrw1dm5cq7SQcWXtxgCzlbDOU6xM14t +ojy8bhud05x/VBCKk39VaSY+E6HxHkzb7a0ZPlRrdKM36CnsFPYMrJ835LWnNNcr9ZSrneLOC3R 7uDbj2c2/8ArhVxJ9li97HBZi6Bo55C8Vn9yrXsu26gXZU+7MdbrASk+nGy3VuMSRL42I3Vy6734 3Bi1S+ZCkkJFUSY/vm4eydZntnkI2wnkajr4MKLzNQACOzhdj5LZpgG8qoC8dHXHXlUAdJBVS3nV AKl2CsCrBmDlGbaqNGiAVORSNoGpBsB+4RfXGqJ4NdWtgMrr+oeiq12whdd/7s9SjKOZLn9OI9Bs ZM4l6Yj1tsXcFfhwRAjrH+Z72+C9rn+4Re3CLJ/a1cbtXgoOEmH9Q+eXjmN8ySEqhVoek2t7yaJN cvmKDbp12Uwdr8sfyNtVJsN4zl/8er+KRfD1soWapBy/1arBM4bvjwIiW3sICiQ+DJDN5kJuii+C 9ttBAsgHXp8S5GIuBuHaVhz/xra2XbPAmUfoWauyZlOL1l6IW8qLmeeZkmQZ63EU0xVf9IhxklsE NQYgZ4f7KEaSSjo2uayKOLUDCu3oAF8VQbs47GO73sfrrWGAra7F1PhMHt88s9HL5VxoZ0cqMa3a nwm912o5oG2hmGEYZ880zlNwYBK7d9SbpxF/5gplJFU0sMkBez5bvPIrYN5KOxq/tHN2G0Pk2/89 Z4iqnVeOjk1GxPQWu4RztVr0Zctbx1WTKWHdLqjG4Z6cxBwg0ou1dHAb2XDIFmIfRzObciCOq2yp SUPBsb0No7sSFxWbvkpDzrsqCtlHkNRqJS9wrhdJLeW8JUjEQgTQ7uNF3f7qJS233fSJAuhFLhfK 7S5Lv/XZRB/8WSylZrHYcUDnW/d6aSw2nsXKKLmeE/dbBruxF9GrBS7OukVsEzwbuHpuS22yqYui 27qZ57B0ETLBuV6zSjlWVTnN2i6HSvreAk47L820J39AaLFKLei8ihzwurUbhzGbdIRp2HfTVLcO VS4qJf5ZxRhflF/yBd+Pufk2qPvFbaFWpYogH3JGiMZY0UxSO5EjNGsz9H1e+FbRFk6E0sfhRn6N QWwVo6xyADPVB5Ygb+XX7gL5YRjn7+ZO7zBKsXs1wlLlBsmEJLidn1mKnGOD7WVmBGeiKhcwtTAj YGzQJLdVHHMEh+9exnXC7Y0sOBtS+ULlsL1ZAeP3etLG9lBcTsevQdCrkqxPTpIl372sYRjPdD8H XmjeFCTwdGtPcuy2y+hzNIoNjrClqnF/Ha4egbma2osjEADHPdBrd6ASoRlidVq7A1UIwqD7/hYN 4GY9g5bNmHBOiiRTd5SeAzswMNlWrlvQazeeRxhzuOCTj8HASAnKCi9vjOCTpM3jgAx6Ln7HXtby YquMm8v4czNPnF2n4LeLE2Abo4yaD00Gq39nQ3+VW6OTRU/RVo8P8cWirSmvFqarXdMPm5lNfZQk NgLGcc3tuqBXKUcYMXZbO6K4cOf53Fzqhp/lHYN8o11teHix8n0boVmki1TV8gnE2KyuVaI6DF2b zbfKUVk+ftm8X6/7P7fNzfwNdodV2HKA0G56g1Na222n48jOFgkcN8F1zqW7LhGRBai4knaamevb cEHaWppm5lwbbkoxawtpA5x1KtsmlJ3cj13CtknkVVId1CzbIYzsJF5Y4qVtiXmVil2ipCndrFda lC1oOA5iNvvAiJMHJYsHcKvP4dRHwZ3/qQ2U3a+yVTjCy0lCGNfEmfrGblPC9hIi7FTY8QiW7L48 i+yXTlXj7SEIT2NWNYLBxwe1O91wwA7UU5e4Va+Ngzh7mle9Q4dDYUXPishrHypHkLbSnqr3nSAO V3O7x1XyDngPTrBLlBa9tJD0Ubv/AgdKnDQM5sehHnLhxDlOnKsW4/M/EsVbFk2YoJ5usZCWOXKo JXUa/CrmyB3GM5tynHricwgubBfx4Em+1w7d1TY8j6otiZotDahpeb8FfKpW0OCWLjNh+UpNaCSE 7EppfHDR6e0E0bfawFQ5dMnFMI0RW5+pNE5wEpORF2P4OJ5u+h84KRNUv4TEY7kdYG6lQSMIgTgi H2uovDPq2+bk++sTn5uRZNPWZujE7zHpQw1GLPUXWy9pwJQ2TI0abRPGTsIRE1/1WDXW4Vlr3g6g ED1XGLDUALBygWi03+kreqpFvLmtxaGHHos+oiCOtvBD2kfcY4kdFqVDWtSxh3rAwrc9mmjC99S7 HjsQE4j0It9qiuSKZyvbflfkfIM/ZyIZtNahhx6Q2yMKykLg1kfeY8mGZaPDWux7GMZiQwzGTH69 RbaitgZjYQta181vhqj89lHhsH5HZ1zKhknY2hw62WHShxqMha31wveedpj0uz4k1FibMnZSjpj4 srwoLKhx80o6GL/NZdXQfdX0GG7z4d/1O89OkMlobcLQR9jj0WcMxv+2PuKAJ3Z4jJatzb6PeMTz tSxpgectrNpgOJ9A1mLSS+Fw0SnaQA3o7/xd9YnQaG380Iff4zHFpTC2ylofecCTOzxGy9Zm30c4 4mENtOiLdcI2zgbzQiNSx1j51UvfRYuD7Tv6QuIWGfquzdjHDo8+YzCmsfURBjxhh0doUVhHP/cx jsfGieINvhlpEVf3toOxi0o0ZieLIumtYbB99Hf+/losHV5cXZuxjx0efcZgTKP1kZc9HvuuzzAt rc069LEe8bAuUnlG7ZLX2xw7WED5Q9A1kfQCkaDrxr6zgtC11dqEoY+wx6PPCEyPrbQ+8oAnd3iM lq3Nvo94xPO16AIef8zbfDaYri3ciAkeRj2rvOpttvad9YMXvF2bsY8dHn3GYDwXrY884Mk7PEKL tQlDH+GIh9+cozwN3Xx2MJ6LqGs/6FxF1Q+hm8+oOqS18UMffo9HnxGYzkXrIw94uvlstGxt9n2E Ix592aeFoto4OxjTiNoiLpjQ9eMX4bN91y1cftvajH3s8OgzAtP7ulsf64Bn3eERWtaGb9+HO+Lh +YwSNlvLJrcNlkXmEFhA9H9VWeEXbsnvTZ5wPg+x3K7Nvo+wx6PPGIxlrvVRBjylw2O0WJs49BGP eOQ9glEUcajbhPZAng2uVee3wle1WRZ1vA3wmh8Lqhy6Vod+dtjsMQZGLSRq/cRlwGYAe0yWamsV x37iEZu9PJH7Q+3bNugN2Ijlwp+8DsPJa0+Glz62Vn7sx++x2WMC9Eas9eNHbH5gMdPkB9Zs/YQj Nh6003fz8Xk5syE6qBOJ5EJytjnxwgl52UfSF5gZhElxyUjo2h372uO0JxtU4llbX+sB57rHqbS1 dvnQ1zjOZivqrQSx09EdjCcr6etXohLEV53L720S8PI/rMeuzb4Pt8ejzwhM9WvrIw94Oh3daLE2 69DHesTT6y5+9ZTfqS5+Ny0cMdMX/Jou31SKfu0119Zi6CHssPSKS15llfzF1se6x7I2LI0OaRHH HuIBy9dq9jDYMXG3OxBS0p4Tm3JIzHGtazDi5KsaQnKHobbwYw9+h4Uf6UCR07atD7fH4josSoe1 OPQwYrH3gLY36GR74WkH41kARN6pjZyJ5+/OWmhvuGaTnarWJh16STtc9pQGqxaZi60fXPzZ45Lv r5VCoWdrM/aSD7jsDb7iyq69ftqgplOWRQMcq+mdRTf+BhFVaftC3+7Y1x6nPdmgolO2vtYDznWP U2lr7dyhr3GcGwdML3YhtR2Qgwt8qk5erSMBMwBEV3ZRNTkLBpK7VseOdvjsuQbkEA== Q9dTGvGlHT6lylqlQ0fpiE/eTKFbHd+Z2BXFNqDQG7zFZoqgCPYKYQUwIcG2xq7VsaMdPnuuAYXe rac64qs7fLuI0Y5w7Sgc8cka9yoUnLbL7a3GDSj04mofViHYJoDCjv4bQJae1g30rcaO1j0+e64B hd6tp3XEt3b4GlXWyh868kd8fA+RXnnRj7uHMbVlGHVZVVF2gy7DmNvNQ62TdY9JH2owprMM490w bcMtw2h7cqUTf8Qk0h3lYtmih7pvByAX9Dm5+4+zV2jENeHcQAGvdU2wdu1bDd2EPTJ7zIBcl7D1 E0ZsocemJLVGcewmHpFptEq8jbpFHzsY33SEQw3qsfCmUmrzalpUsNTm+VibXR/dd989YzC+Xqz1 UQc8dcPTaFFYRyv3MY6nTa2ds1xj50h0QHEAUGoHbq+mSPnlW9JiM+1RaKahT22Vx37yHps9JsCk DkDrJ43YUo/NaOpaDf2UIza5LE9jd7mLLfdADgzjnLpExjRyzEf5uUUXXnbmKvatDv3ssNljBtTq KusnjtjiHpvQZK06qjUtvhyxySK2E7XL0m1RHVCpVbbWanQo82vt6dAp2lrlQ0d5j8+ea0DdWbKZ dotuPsXsvy2L0KjqW40dlSM+85VTP4DbAagn8EMbt7wLdwlt3Nu0Lb6NW1v5sR+/x2aPbdyRP/w2 bM/GRtiGvZkyYRu2tRo7Ckd84i0v5kVu1ncPE7t5qeaPimW9VPNaN+t7adGQ1ubYS4/LnhJYs5tb P2pZN1yd9d3o0TaN4tbLMK62IZtR2r3rswMl3H9ZFuu84MLxYhawfGXda2Zya3Hooceijyioymmu rY+6x1I7LEqHtHBjD+6Ahd3i1cBdrmgDaiA5OutcM0HRGQFduig6I3Jrdehnj00fa0AJy7V+8ogt 77ApTdZqHfsZx9blx6S/RRMxtwNw1QyZvKxz0XRM0jB3A2i+K7fIlCbJhn78gE0fa8CiebLcAnZ7 bLHD1mjaWg39jGPrAiC6zPsASANZAERyyIvTwIOz37cAiOShFwuADD2EHRZ9REFbAET7WPdY+gCI 0mEthh7iAQvnVYrGfroIZgdjewG33HL8SCOT/GJ3+b3ZARyXDrFvs+8j7/HoMwLTkGPrww94usBl o8XalKGPcsTD8qulU8i1LnoRTQfjIxxJz+bicAvaJHlrXfv+Wp7h12q0NmXoo+zx8DMbjF9n1PoI A56wwyO0bG3GPg54NF8vHodIjOXrGyzBl+E7h7O88Rn72WrBMf3+Wh7S93JomzB2EvaY+KEGYwH1 F1svccAUe0xKTWtz6OSASfZWrYkvXRKpB4q1i5JU9lGajnSyekqXR+IKXjbr3bY7Dv0se2z2mAA1 D7T1s47Y+mB/o6lrNfTjjtg4cWbr2G32Yw9jZ9U3ZSChBB+3YJ5x0DeVom3C2EnYY9KHGoztvdaL W/aY3GY2Nmq2NkMn8YjJrtPmAm++wzvY6+o2KMoQq/whF2dhhwtRXhdbrQ1DXqtzkXEt3a7d2Ncy 4LQnGzSu60XX1XpAufYoG2mtnRu7Gke5CXiVFywhMxvMZu6AfMjb2QWGOI8hZ2n10JYBROT09rCt VRn7KXts9pgBpZC49RNGbKHHZjR1rYZ+6hHb14pR3m4dXZ9fatDFckKZz/IB0FI42Zp0qZ4sx/t2 7Y5d7VHakw3aUkLalzvgdHucQlprVg5djaNsGtyCSmvpSq46IN9quK6W7zAv3VlOJHfVUM7yJlur oR83YNPHGpBvo936KSO2Lsqy0WSt1rGfcWw26KzFeyjnsSk3WLFSmypqhAMx1AbXKOvvjfO5iDpq bcrQR9nj0WcMJqU22kdd9nhqJ1VGS9dm30c94hH3X9PdsXOCN5j4rkFuGwgaOnCW6+4DFzB9Xdja +KEPv8ejzwgsWSGk9pEGPKkPkCgtW5t9H+GIR90FOaDousNMG4xDEzBtIC5Bd8ykKTH7bjY/BK9r s+/D7/HoMwaTUiLrww14XIfHaLE2YegjHPGw3KZjgLKDMY057QOUOR4DlHiNbh+gzHHoIx4Dhx2M aWx91AFPF5JotFibNPSR7ghQcnxn5aMHXaXDBtQKhUXNmpaGR3xkrQ3AQVKtyzUYYjZ9L9333D0j ME1Ztz7yiKjLe2/kdK123RyG1eRXfc3UH8bbYCZ77FhyHF/katErtDe5UjektVmHPtY9Hn3GYHYS S/rwAx6/WydCy9Zm34c/4tFq7Z0pfNvDkL0OfDKQXzZY9F0RJiv2nVU/56Ni32bs42BydzCmrfXh Bjxuh0doUVhHv5RsLUc8uk5XeQ/Fwi/mvh1gnH3ISV64wRccLrzosjXAd110cufW1mboJO4x6UMN xkfOt17cgMltmBo12iaNnaQjJi19lWhlRFp9DVb7qkDOvXOV0RrlZFlCIxzpsQYMYBr0nQt9q303 bsClTzVgCCVfbN3kEVnukDWSrNU69jOO7JBK4NcbjakEKPddKsFWSQvu90uppQD6Vod+dth2qQSr vN76GRMXaUhcCE3WqqN6n0rosUnSKG01eW3QHVCI9aryoyHA3cBaDtjZBrp59K2GfuIemz1mQD0p Yf3EEdvOEjGaWqs09pOO2GTQaqV432fKNqBmuDSX7i3z7tX48X0RnH3pWx362WGzxwQYLMNl/YQR W9hjE5paqzD2E47YzA+WquHSDboDCrG47EANDS03WIT3BjBP1kyN1mroZ9ljs8cEaFe6tn7qiK0v 5Ww0tVZu7McdsX2tsqWyoDdU345QvsEMENEKfHcYjgW3IIRBXquQqLC1duHQVxhw2pMNyqfRu77q AWftcTbaunZjX+M4Wy7FfljLVtzQwaQuwYIr7OLxQVChQ79zosOCNNYmjJ2EPSZ9qMGkLqH1UgZM W9HMRk1rM3QSj5h4tjVuW3uf32Dmpmvs15wup/Hh3jFzGkPu2uz7yHs8+ozBxDe3PtyAp3fxjRZr U4Y+yhEPz6ne1QMjzurBG2zVszP6/p+kL73BbYz6e6vTLnoLetdm7GOHR58xmJy/sT78gMfv8Agt 1qYMfZQjHk6daNFf7oIYHYy3FK5zlXcQ8WKK6lTmLoLBOwQJXWsThz7iHo8+YzD+t/VRBjydA9Zo 2drs+0hHPDzOVoSXW4qoA0mCx/KMKx8zjK3irx1EbKXnrcWhhx6LPqKgogme1kfZYykdFqVDWrix B3fAgiH+8fTi9JOrX/ovX7z76nevPn68+fBOvl/f/OXNO4X8/OKnf3z37tXtzVcXCrlwn50msAuS GTLk6P+o6+9OOBXt9Fz0v37PX/+Z/vyfBPz7Rbj49cWf/n25+Irh//p7yOOFvmwOfXzOVmP3V+E/ iv5LZH75X4DCXTznHn6L/6X5xS2zeFXl4hF2xUWOJMJ8QhkH1Z1cuwSHR/whGGfcIeds7C/69fPW 7vOTHfF+Lh5UxItp7F4q+8pvdPPIa/ErH/EKXvhGwf5iD2eRo8MKcvx+1PaofV1NceEbrnDBI/Yo LpVDKizYX5psY6QKMprs2Y5km/f/8kc81oi7/dEQ9yh+3iEEmHrHVxGsFa8dJD/V5RTw4tJFxELO ppsQ4Co0mXrc79b+0qmXdnshgGbuhKB9VaJR09kRTX5PRzReRtbxWV/VYY/aV+GGfjNe2aPKyph6 PhtSBRlN9mxH8k4INuJufzTEPYqfD2mCpay49RuvqeGX1u7vm+ZVfyt/BVEty/bHQTdsIoDoKGi0 xJV9rbpenA54ZUKL/cGM2waNhSbssueMebzM5IsyVh9Tthf7Q5ISgs3e+2LErHZVQaN1N/eNqtsf AVWP4eBdC78W3JCJydc/kr2xWK8n+Vtb5HKw36Yax9baXwdlsM063mrazXr7qjTjCrSO5rD0RMPt 7Tjs/Y7F9lWYYd+UVfaocpL67dhsSO3HtGdzR/Ju8jfibn80xD2Kn5+08MtiQlDaeifA9pdOfVmO QgDl0wlB+6pE57gjOq890b3GI5ApS310053cNu74bI9uWrjjsyG1H8uezx3JOyHYiLv90RD3KH5+ kgkgq17tQL+art/+OmiHox0Ylp0dyBLb2S2QaLFb9K/eDlSQWlP2qH1delPLFpk9qmsQL4/0B1NL QUaTPduRPNqBSsntj4a4R/HzkzSBrHq1A3XqQ+n+OmiHox2oQtC++r3doqSSfHdE9ypwM7Xs0U2Z dqaW8app3qaWOz4bUgUZTb2CnwnBRtztj4a4R/Hzk2wCWfVqB9L/ifnX/jjohqMdqLmY9jXvrRjI M1sx+kdnBypEzKr2nK2gzeJqC1PNp6wWl/7RW1wKasQse4ury66oHag03P4IqHoMBz/VDtQ55wvO TdNvfx2UwdEO1FlvX/PeblFSSZw7onuNt5la9uimOztTqynWtOMy9dux2ZDaj2nP5o7k0Q7sZv/H Qdyj+PlJQlAWE4LS1jsuBG1/6dSX5SgEZqhYGrbsiTa7RUklu6Ujug9/bKaWPboFUjpTq0VZyo7P KMra+GxI7cey53NH8mgHdkLw4yDuUfz81HigvraT/lpM1bc/DrrhaAWWnRHIKqszWlwwo0X/6o1A BZlydDs7q/RmVpDLoduDUmeAXuWv3spSUDOj9F7pRu5oACoVtz8Kwh7Fx08NAurM01+Lqfv2x0Eh HE2/srP8jGKzVJROVD5sFPcBkM24skdbJKWzrZRL7UHhIXrdGNxQCqjZTvLoRu5o9XUz//8/YY/i 47vHa3tTXredWaIgszuaBgu7mGT7agFxt4tJlj4kGfaR9H0gfRdH30VQLQIXlc9d/PTr0/kODaIk 2yhbCCXuNt6GM+1G2b7G/cZr8eClH6Zt+ApSc8Aeta9rbyu0nSXtxrqRvA32vBnNaz/YFiqIuw3G sNp3pal9jfsNRseT136wfR/bnmiP2te13xNbOKXsBruR3A32LG0Fr7e2wTaXuO4c6uZ/2fe006kW VWlpmdV0ahdVabv52m8BLTKbd+HgvAsENYuumpXQBYIGMb53U4Z3tw22uX515zi28NO6G2z7Wvdq RMeD3MR6UMcWZKy7wdrX1Ks9e6S5ya3RMNhiy6BXOAoyjdLs5rBzfttXv1c46vKW3vcN22JuCqc9 twvY7Fx1c/W8KpzOUX/MGoQ5vo2y2ep+p3AazrQbZfvq9wrHAg9LP8y+j03h2KP2dekVTvNn0m6s G8mPFcu89oNtNqnfKZxeM3aDbV/9XuHoePLaD7bX0JvCsUc3xdkpnKZVy26wG8lPUDi6vHuFY1G/ ZW++t+9hp3DMfG/xv8UUTme+931sCqeFAPIu7pB3HkezOlujzuN4pMLpBtssj7xTOL1m7Abbvua9 wtHxxNQPttfQm8Jpvm7tB2vflr3C2VTwYbDnWkJqjvWKyVnl8s5Cs69lp5aaP2DPBlVLnYEWNsXW 1FJ7rncjelvSHhJaSm9JPtIK6kbYwg8CalpHUaZ+hPat2b1+N0J0HA4qSUGm2t1OJQ== lV4jmceTduPcyH2CBdQNtLnYAmoaR5Da17JTR0ZtezaYOuoG2pvFmzqyR5vN2mkjM/DLbqAbuTbQ p9Yg+UkNkv/sIl6uofL/8olbfjEs/5vT6SlVSX1/t+279iixoT2WHUye+3zoxyqY1HvZvwPUgVmF 3/kKfC9PcgkhV2/twTgojjdbD2Dtwy4UGzsZ4dbLCNdu7OexmxFu30c4ad2QUQ2M9yGSIAd+1bW+ 83qRtcxyTNJdST7kHzmDJO810eFtTDwANq4q0QeA9fX5AZO59bsnbzeABgN01Ptv9+DdOaeR3zGP 17no+k32thRwPHjRWO2GCyH1VnRGdEvuaeXq+bRjwqp1+D2oQFn0z00YcSD6OK6RKOPWvuXtgUMm Bftv92HqGebIOIngkwv6lnQPDbiy5qtpKbJhV3k5VScy/N6vtOMEv1yv5B0IJxvjTgJm4zzSeBxH W4LdcwNdxrK9Sri9tzthGwpwSVCGb91ArMsJ6A5JtC0ziNzhNYAOr5kaiiNoACHvGDsZ55H8I/IJ hTnrC5I7ovcIt0hbr5OWMxSBtf989/TIhdU7HK7Cy2pg/V4s/BrXRexBvNGmV0i6kjqNYMutW0K8 KGPt1QufE7FWyrWeoCPBhzFNFOCeqMaoS1cws5hY0zXRIFC1ZE32KsZG0K/bfgimdvoxmN7pKbZ+ djAhbTf8I5MmrNQHu6FN9NpE+xmx3YPjODc+rfa+qrXZVPYKIycr4W+dGunFz/TIbsZUkfSDnfFz Ro8925E9UVUzhabqpXvQVmLfv8F6OuzRnt5xrKO66oyLmQZSUP+0PTmDdY8+fkWamjDyb+8Y5owd 9mzHtZkiuluh9qOxJ3cjHIgzPsqq7q2ipX07qqm7tEL/xI5xEOVtyQec+WhvZesMShYtu5JQDTtM fNypFZOPXvn0mI+0HOmd6TrrXkX+8yNdj12hbW/uxtUs025gphz6kZkO6cdhorKDiajsmHJk3WQg 9mA33JmmnGnURm/37DjWjVfeYjbtj0SrxxW2nCATf5uw5faOLg1lj3qm9GYKw3jUP9vMgw5HcxI6 BrZnOz4bjp2oKS07mNHcPTsTg16h9Up9qr4U1uOxZ2ewO62Mh5amaQwj/vYOBs0Y2Z7tGD7VSvfo 4n4w9uxugAN9e41m3m6nUXoH2EBgpoJYl4c96Cz10vf7eGtWlQ+PJu40oA368/kQjsiPBM605IDQ 2GZy2TOuwTqeTDg3IW7s7cCbs3xO1VQ9b2aacKYxTVP1wzSiesbOCL1bXvonB+KMj0ZEz8cG65g2 4+2MmLG/kZPnOaPj0G877dSPYKbFptpOF13/rP3eM2lG/WyUs6n5esK52zv6vC/ItVMaM+2psH4m ZjO2055nBY1MRfUCPFVl9+jvh2RhxvUR77YlL0Z3rMgxIHprWqpLrCwXv9dVKhK1molTmwKTxr/i ZvHi76eDz3R7mrmDd/uM98eCjgGju6NKPbqjH/dnWTVkjyyJ+aDLJ9sfS4C1L3wgvZLXCHOPZ3ft o/mrOK6/Oh08o35xPeD2TbzDe3zIByJCk8DRxGf7825qI2wAiEF7VW4nBniG35a8GbnVGKJs+tXp 4AXedvqhI2UWo5lEVu6JvzzgUs48z6N/qsM3Mz5Ihm2+/5yzXn51OprPt6eplT2xxWeux90eygNR i0lsY2bY6woIsEEwcA7FYGQ21kXcXRMBWym6Y1d7sJOA0RDvV8BDvsLMp7jP93gomjGLeswchT/v J7gJQoHIH1bCYiGA1X5OexmYBmVmAY1JRGDmnN/nxD/kx0z9nYlfpCwQM4GvMRNlUOVfG7plNIP9 UVR5qBnbL4E+kjCxkCZ21MQevcdsfcDdnTjFM4vR5p4FGFpedXpRGdhPvWmGZmrZNsgjH63PPjHy kOM3cxDvcyQfsmZnVu/MOh5k/35j4DwVMLqGt6e5i3afK/eQNTm1Ou+xTnc++8R1BRuemt9Nk/xu +uzC4b07NfG/uBoNt6ALQP5wp6dkecdeb3uYdqwr536oPv/5pM/RxPXmT6ihA7HXYpwFOtCOqJP0 VL6T2y1GmcI8SfKiPVdSI3OQPfn5pLfOcL17EXKNvDuSYbAeJ15+exesRzr2txFyHlvs+Xokh8Z4 QD2D1SM1dU9MmPA+THjvJ8z3E+6P/Z3N/TThfppwP064HyfcH/t7LPfTkftpwv044X48cj/NuZ8n 3M8T7qcJ99OE+2N/Z3O/TrhfJ9wvE+6XCffH/h7L/Xrkfp1wv0y4X47cr3Pu4018R8WzzDTPTPXM dM/YY0Ol8DhRcemozyagOFFx8akqLk5UXJqosxksTlTckZDHqTg/0XFhos9mMD9Rcv4OLRcnWi5N NNoMFida7tETkCYTkCYTECcTECcTMPb3VC3nJ2ouTFTaDOYnem6cgDyZgDyZgDSZgDSZgLG/Ryu6 OFF0aaLUZrA4UXRPnYA6mYA6mYAymYAymYCxv4OuizNdlyZ6bQaLM103Dt20U5noOiFvp9gmoDLR deWpuq5MdF2Ps9lKE1iZ6LojIY/TdWmi6/JEr81gaaLr0h26rkx0XT9GP+G/n0zA2N+jdV2Z6Loe aZxMQJxMwNjfU3Vdmui6PNFrM1ia6LpxAvJkAvJkAtJkAtJkAsb+Hq3rykTX9UjLZALKZALG/p6q 69JE1+WJXpvB0kTXjRPQNFOZ6bqdvpnpoJkSGns0VE2h8EODkyYPDV7aDGhPfz7p0TClCaY0wxRn mOIE09ijYaoTTHWGqcwwlQmmscdNcFpRn7McWLUkSXcAQHNJHOpwmjDynDBqbBVJuT3NXXH9eQKa GLgdCMGdWdzki1OXPD1rCPFI6MxrncUMmjxNvM49qeEHIbUcSZ25eDMHOx1JLXNS8w9CqnNHWhvs IX+0Hokd+2syMAa/nkbuGDnqxTUeZXMCeigO1Qts+EEE1k8k9iEXcBY1m8Vtepn9NGrHuEQvtA/5 S7Mo0yzO0Yvtp1HbxMzP5PYh92IWlzn0eJDcT6N4DAj0kluOYjoBPRRe6CU3/yCSmyaS+5BBPwuG zHzxXnI/jdrR0ewl9yHrdxY5mDmuveR+GrVNztJMch8yFmeO9qHHg+R+GsWje9dLruLeGwQT2EPu 4s5MsKTJpwlvT26ckdusghnwIfdqZyx8GsGj89DL7462NCN45g/O3JGdyfBpBDeB6yneNv6eujoj eeZBHfo8Gg53Ev1geQwTLeVR5sIcAyt9BLweg+Lm5xzjKndEDzoUYYLCT3D4I5IwR5KPSPIESZog SUckeY5kc/gmTuCONzN+TRi23IHH8gWTWQnHKZiA/GRa7opg+8nEhMkkzGB+MjN3BWr9ZG7CZB5m MD+ZnDvjkX42PWEyFTOYn83PAZUFOScTlI+zMQGlyQTdFXZLkwnKk8mYwdJkgu6KLqXJBOXJZMxg aTJBdwZR0myC8mQyZrA0m6ADKltYXcCh6bU+tmALdQLrQwtjfwfd1uEJMzx+hshPMI09HhRchynP MKUZpjTBNPZ41HI985Yp96bsm/Fv7NOQPbXOJU/qXPJneIXrEiq/ynWJ+vahUJL8W592l8HY520H 035tF+9x7WD27OeT/gDbH0Kwgnk9/VLsApb+kpkEged3Oqy1bPcP4LyXhklXC+VGOx7YnQq051O8 1JcutR7XSxQxebyRUN4cwgigAkPdvj87sW24a2NdwEAP9K99N44869C0Nojwyi1A3Idxp8czthlI 3Y/lmYnxMEUbh7biylY5aBf7dBweCemnvUQpfMOrv+u6DXA24LFNoytfukrz28RhCZdhIRvzWU+8 NsqX67INZdkh2P92IHHCz6/Pl7O4EgFlncjZeWdl7PlNzlqPMnmxEH2t+ySHhXpi9w3saRMf+94z ZGyDdzXHdL8oj21GKnfDeCQPDd9EEo2H3vyM3E7wHp/v58BgNs0hXJJa3fgw48vYptGlQmbfd5J4 aOQv/ZLuF/mxzUjsbAIewU97bKL7IIAoFPVWG9pKZ2WF949vItk6lMk2uTGwKfGe3LGN/Tt91hbq 2AbokrtP+McmA6X7oTySjYruqVI5UHu7gWyas7tcSqeBpzwZ2hhRKm36dSeRQ5NY6Sea9Pskf2wz EDph/CP4OO77j91oRvG67WBGIQ922VQIGOJrCbtRjo0aYcqpZoz03BwbNYz3TNrY5kDtZME8gqGm Ungm69oYanB+OekSdlYL6+8cmtliz5qqse+92WKwhg87jZuYE2MDNUfsedtiexxjm5HOcSyj1bIp p8esyZGS3maxNWD2iGA4Dnb/ezMfaJ1WNzfPxjZikMjzS9dzDz9QNeHhE8yUUWS6EzK+nSy65/le tAxmUyaGiGFQndHTu2/QSBKhOVoQQwOzQO6T3LHNgcRhGE80VA7CZ3psPV4eeHy6n4MG02k2E0Qw HHmy/73ZCSpYUx9kbKO2x13ivf99pG/G9CdYJkcxbDHZthVUXdBdSLY3UE0KDWZTvDN869p0bU/x 2KaRJZJ2tBrGBmp13CPrY5ORzHEoT7NNDoIolT9ddVAB8yQcv72caE9uZ5nYNJvVIf1P+LH73cwD lbCJtTC0MDR3Sfn+94G2CbOfYIw8bf8Yhak3RZoNpVaG6nEzRLbR7Rs0W0B5M7MNxja9XTabnv3v BwInK+IJ1gf9y2Gsx0qfPd+Hi1qfahWYBWI4TO3Y995KMVizGAD3cwvi0EbxWR+2y/Z4xjYjreN4 HslOQ9nrtKeYNP10tD5Vl5vJYjhmrBnbWB+846xzI25sIwaM9bDs+t//dqBwwvgnmDcTmbT7HVa7 zSVulyEcojC9TLY+zVJl68UwqBbq6d03aKaGitrM9BjbmPlyn9iPbQ5kDkN5oolzFMezYgcjxb2N Y3NtNoyhmHFmbGN9mKRN3ZaxjeK7T+rHNiOtsxl4gr1zjq7MW+J8u2WoC/qaXLY+dcK7YLLlw1m9 9ySPbZr1oYI3s0YObdSiuWcFjE1GUsfhPM3omWhKsxl9OxFtonmwevqpsA51ss2qMQRTrgxtUrur jmVuYpwMLXpL+i7pH9sMdE44/wQL6KkbzihfvQ3UAptq4jR1b1ZQP8qxkXVinJrZKWObPmJ615SN bQ7EThZMH2roF99vTl0e6lFpkmW3M2M33NIjhmFmSoxtGlUdfNw5xzay91oPy67//W8DfY32J+4i PeueEtFfdhuIEGVbg/U92/DGNo2ezsg52JNjm840uWtyxjZ7SrdRPE3RPZV7+vjS6zihyLSX9TxT yGMbI6YLew3KZ2jRh6zumqCxzY7KRv8TNduEb48KNC87nSY0mbJqC8U0Wj+qsVEjqE9xDppmbNPn Je+aorHNQGobRse/dknQZnewJP2Aye5HBpp6FduH9h+dzH58QPbr0x1Jwyfk6z8hl2dz0i7wicM9 bXel2e9i0X103pVmPyMPfq/sfHoC+5HBob1CcMY6rGtn51Anc/voBPbjQ61fn6ZZvw== JyTon5qOu3emHsOV+6i7K03+kMT/IHnlx4bCHrPUJnP36PzyYyOjX5/mCc6n5M8/Ie14r+A8gi/3 pvfnqewHpPoHS2o+ITpwhqqZZRSfktt8Svit38Z2SaXH5m+fnPO5V2wew5o7SZtv7mdkRc9a8T9I WvMJDv5j1HXPvqfkN58SSut2sh79YxO4T0vjnDVzj+HOnQTOt/hPlfsfKkv5lFjHGRprMq9PSVY+ PhDWb3U99kdnY5+c3jpnlzuHL3fniWe7/wMS/4Plw54Qv3iKI9LH/Z6SG3tKQKvf6XaphSfkAD8h 5H/WdncOf+6j7y5L4KFU2Q+Sw3pCKOcR/ljPmqfksZ4S1uu2sh79E5J1Tw3Kn7XLn8Oa+6i7a5d/ SKp/qAzTU8JYd0zNU7JIjw9a9rtRj/0pqbKnZhgeMfh7M3XzrfgBybzjZFHE9y9/8/7d7z68effx zbu//OxnAuYDR/0Pp998g1+K/HL94btv/2r9tKNHDMUBpM9Oy8UV/f+//v303Wl3vmh+uojPFv0s 5+ovE3bLEmq8DPzeQIIuHg6136Cf76EFb9elFfL5vos7wK2PdyfkdpBP1JdEuZaTNUiVOrW/oQeH q5Vpn6eOaVb8EoU4hzvZcS0yg3GBPYCOxCpXAfL+L8AQirYkwjA5Al5r1LbUvz2eFBXbZIKoVq+P 440A+jjeipD08USCp21TXRUYECaeDuDZCaLxT1cfPj5/8/rjm/fvXn34/uLnBPoprpsuOaXPLv7p i48kAX+5+On19dXr19/d/v79x1do+tnFf6WG/wf9P1OxXq4FwQcem1905gjsA+I2DCZOKqza4Nzq FdaxZl2cjm2VK8YFHErQttswXM7WaSwx6NiWvD1fYjk09TSrCozOOh3o/wF54y9LMgnx/H4UgW4U h7UKbbSIXVWCfc1RgUtalAt8S/gz7WAjeU0hadtI3DGgs173BPyg855IG6n0OfZ/BJwXm+OQclEe 5+hMqt02m7qKsXwuXp8OQJVezHAOR9hs1nNwtiLjqi1LrbbIai33MRZtl2STsCYjPizKWBJVE9th 9P9fcDY60wI5GGN9Mokum5S7oMyuMTfG+saG4mnstsqyjpe+1f/0oXlUY7E+X+mvtS0Il7wTqFtq 0ClyKwtSdWLSCDAEvNgdQJ+813mjvbzgXn2ACSq8CZfFsbYArhRkRWEHdw2YTJVGassiVqEOVpGc ZIykXpt+T5epkRW8M1WebSIITBuUsLeSEOYivbK3DCD0GQwnBpLs6fwkWS0MztUpsT4bVdHr856L XgToY4hNdFP0RQigzcs2o6AgNttlK1hJ0Shb06r6dqn8cgEFE/xCgKpSAKyiLwm4rsEpV2CnWQcb fre0jWupkTugLSy2vaj4KDBmetsLtVs+qGuivOhsEVdLMAbsZeiHE88FvLX1X5xt9Eu4XNaiuhnx fYH54FlRkTUGkfs3bhrJD0im2+GyCjCXNCwzHATnsDh3ipsdhY8kBy5G7Te4pG39UpwAae0WBZLr VQQY0mITQciyGADqyChQuMvUiqJYWjYRFKwltw5W1Xc0/042EpyUWrMCSXMKWbTl1JS1JeymZ8rF pCYQyUrwq7ZN3jQVW7hTfv+gc8liKHyQl2YLeM1O+csWuACDzwYsjbg7RherV7ZH77y11e0Ia6Y0 9mTRrhU72NZBcN7AvhoFa2xkqaro7NwKK2ltHeiqAtjXeGHD9daBX9PFlAc/oCrPpBMX7Zv1gOjy Ks6IgCtzZ3WiU1UgMo949djLTdBjUFVOYB+TCo8PS9G2Ia2NvTkpMCWT0xDi1oGqfSDLxWvb2jpw WVYgLix0wZbwsqomXUOzUiv5W9naphy17ZJl1glYY9CxLtBZ0gHpgOiKtRWtRUCyOKshW5IC1+iN rNUkhMGxgUttbXOxJbxswNq00FpkMyEwmUHGg7AaBT6vSq2vGwW5CS6k2ShwybRQQr86rmRts1hX YIHSVDIRaugXH3Rmcs1GqsvVNEjaBjVHH5Zoqo2mRtvGmLQDahoVmNdiIyUJbh3UYh3QdifTlbo1 5qN2kASvyqtZgmi7mnCRwWrM2ua7A95BQWzMWmGh2rhqHsTwbiFYmhjWYsjUUurFMHZyjHi1PZ9N XnSgm/NF6kMWYaaZMk+iLmZPEZiHt+0MAvRrzNaBTkoWDbTtYq+1g7o4G5NTOguXlCtLfDVg0nVB e2P2ug0SOCejIKeYtC0tR2sbxZ4gYK3RmVnchk/gvK5dvwqMZsqz76zAtebOMm4d6JZfFlVDxN7V 3JicRPECGG1jY0dBHoc8G2fzItzyi77Elk3rWAzIxpna20k7IHBp7DZa/RZdqNKVAEM29eqSUYDr KqtTZCWI0UDAXBuyQvv4v2jb6p3tzupj+RUOuam3Ii4DAb2v4YBslRbbViW9ltY2q58KslxRamsz WzxiIYuahTSLQVmz+WPqujG7bLmwyL4+3dV02ued+Ce0Tkd1JweMs6RdxOhBZK6G2DUV4Gb0pGoS 773sVuKnlmzcJgvCfLEsoYK7CZhM13RiD0Jwr8AMwvVvpzsFcSqyd4g39RuLriXzbWgIwVWznuOy MTFb8CDRJMiE0zQtsp1lUgbinQXSui4psCTZoyLNYiwKJCnQUEOMuFNLwWSQMW8jjWYRtZ1Ir4ve SYhlybiS6F/uAHdJiXdSYPV7Hm6mP7OoA7zYTWahkHAtQSOTdbEhFLI0ipiSXkgEsMoL0BhIZgQD 4dbqfqyhTWZiVeSrc4y8QobM9lcZJNi2O8Rk/iL1SL4Brw0vFAtudiTEiRMbEt0XcQKpp1L1eY7W cZQAXpgTk6x42zfqIkoVQFTjFsXkCSWPHTeaOTaSpBVi24kFqpK3lSRElJIZ6zViXtS+SOCxPBub eZO8CXWNbUCYOdlyCMhhRCY+ktXixQdPskIhO8W8PKKgBAkiBL4+Snt1ZuH5YlFaQNVbxov8RPrp +XVNokFC83aJPux5tti9WxQc1UTk0L84tsSCEGz5VPEWGOjNxKp406WBfbLdvIg8WcxbDZzgFNVK HbbtbZFYKoGDmQMwIpPONXnqRkER55OAJUadQFC7sgNM4IpVpRucX7NIRRLvF6TWoFEMNru2Dbpo HMNc0hURNlZBIHaRTld+j6S2rCVvRkpoHdSSzMYrgf1UhEyiTAJnX01WWZibhdQIW8hZUmOqeKej XXyzsFL2FsgRP+pn4hQ0wrKaeB6ZKA2PhBzMVSFX3+IYtOb1eYRFqwZdShGFu64WCAZVmweluxuY hfcpSgdtL8PAVjVIrBqQgWb5OAmBCdBbCmGV96lqv3DCBKialfmi/stimhXxpdrMrIVY4BRsZg46 cMJYt/lwi1l00A2YOOsgVGPNovvAyvlli7yFYNG0Ip4hgNhdXp/uantXr3dQMKV2Oq4ZD4gwJykX TLnF8/FCVItn0UKx4CFTKEGuxXwF1xwT2ClFlg0DJSC4tAUKYBtCQK8WfVwkJlGlpkMpqOJEoS0C jT/j6KPZ1VVuz5UOONythC1JOyhm2xOQfECnQM0oVD6lUVoHam4TeNV908EOsVBfi8BWvV9H7Lfk WwchmsPVklm0sztzmjncq4N1TlEtWOLGxFRtnys6jbiu0ls0gsyLIOYuIruLGTVmJnTh3oVfXHsP v1vkDGCNsTnyDjd2ZfG6XIvGAYgXnLYOmq1Gtp7TgQ0RlX/7waI10HUIvKjvZZFNKDZvoYp1aY52 0HRjbbkzRA/UBtqFa6JtOb2jl4hXNsVNsSbyvcxPZovRHO0tsML1EgJcXbNjUlPCwxBe/zDs+aNk t1+8+2qX2z475X3hnpz0jmKCZL5c9GdkUSZaJ7IjCPTzPbTwi7CzJrbjFNKe1Cy3vtrlb9wT2dqL xIyTZFpuFbwWr0brEj1mHECOfoklm3hvANBlp8AWFE3/L2PvtqLdsmSHPcF+h3VjsAX/Is+HS6nk C5syNoZuJIwQYnVvn6h9IasRfnvPiBhjZFZ9VWubpunV8c/KL2fOzMg4jBix7aB2jls84uPCFDnc 59neJ4SP+oDdugrcARN7LsPFSBuaEDbKI9yjctQ6wxQeJ95ia8Q4juVyasfSzbCOXOwmEVd0WVFX mO67xs+NuENjiJX2b5/X3gJY9fzcXhUDPGZQ07i78u3ceuAsHs1CY73xPXoLv8hCg+5b+ursxHk9 CkurM0acncdyna7KXbjCAWoRPMeoCFG0ZxtU/P0yY4zSCMDaoytzDVZvHd931tq4E/o8AzwWNsQt 49GR+CFSW+u3bzeYRZztH8yBDvX8WE2lY+M92q9sfB6/TQLgkcJ0irVZux9xWIe2SXqOIHmKaFZ8 4RH3f0qRBox323R6HnGf2iTxyj5qi4CAKeveIIQRZcLNm9qeLUlnYsYMsmWguRARcH5k7hS5zCM9 moCWx/+Lgy64l66OQ0i37VnImXjQnssR+BDbrS12gsXc6Z9Wfkm7fAdPql3p/JIbbzton7pQMwiw hu+EXrQT1tDfP9qFL2sJ1BCuMnHS4Xu5cBYKF+JqLt4Z38vdpHe8WKoLYlypJvT7J7ZHyRS6lRbC urbGZQqmBfTknT+HHfZ4Wg06ZGsfPN4TX9hMgUX40EpTK46D42Wg+DQj3qDFpL/b39z3L8tIjcvL zMRz6PBtnrJwXv7kRH7/7DXqEX79kH9FAAT71ozkgjNp4hrr4LZzmH29My1pVjZityasq1+Wc3jX z/KVzST945/H6TXxUkIfGZDHE+ccLHgUIYtufqaHgR7hUMjBum1kGWMI5z1Cx2TEsz1MxEfo9w3y ziNrAE+CxbN2ut4hXgFVshfucf56F/wgKfdtT3bG8zx3z3HX2oPiBXXVRzjsgUoo/LVHS5UEB/E5 HxO/9ph/nELj6n75PPhu7kaPRkMVn80cuCITfkXwzRw4OQYeQOGTjGru58pDRKiExx3iFXqQDjOM bUSjvk6AG2pEXubEhD4gholnPrnFNbg8vSaIW8KXG/Gf4afmiKm9jssfrBaaGHFkN0GDIcWR3xMr XO8QXAuT3YQxMONy3MB7DhxwV0DvEtdxiSn0iMdXYb6FGjcXjpsj8+ubfUFvcYVfXgwvPBqv9329 sEkDzbSlzlyIT98UoHuEjxmlsFHHC/uzY1Ic9rYJ+xwvA3yeACbWLH0UN0iKYIzPrO3AOzziHGnt d4hpOmTitB4ZQY7QGiFcJb5ajpDYG/5+rY5nceP2FBk1l+lDGAClcdBEDWW/VRPEvr/jAycZoVkn wIeIO+jZkT2icj1FUsiF04L1bxxgNABTC1BA18TK8zYBe7QZtDBlygUusBcbgSoxfHDPeNaTqCGE I2/CygFamkUDpFHwCh6LeP/+87zHd7O16gmXQzb/+YPilmG+eHDuXeLNp5G/8iEyhRa6/nbct/OD acCGM0Pi7/yeZz7j6ioBvbM3iOCtj7D3b98Ne1TSQYZ5QpYq6Tl+VM27U/eUuhiOgw== dfid7vlZt5uhU6CyH5OrYATPzMcUgCd4nde5lPuY0K1++3782RWj82zBfcvJ60bbSmYBcOT3SYF+ XylCo68/R01Tw8L20+8peKoa3ICPuFMpVC6+RbNx9Vg8vlNT1EV00QDsPuLOOGOPELkvCzHP+YOm wbTSQoR6jE6lFj7pRq4iHoR75emAnfX3M1An20BZ8YWeASrsjR5BsRAC9vkIjwU/eljjvgCPXuAM ahxbywf0zVGLJa5jBU33cQHgKj9iIqlcL1MBT+QObK1LBN57LDBn0GvHl/GEwa/IlGxmSgiveoQz V85VSzgjQBfDAlg5pg5EV9j6EbY18FqLEZsx4xL3SEMfgVu3nyoNGRViJcfQTCMmEX8/IuMRUgSt h3lJEfi3VjeD8x/IMV3BBhNnGJLwrd4hHtiFQ/bEQDgi1gVIhmcFd+Lnch+FC3u+uCc6QkjDt8tA NSHeNQmOb38Oe80mmAem1WP3x7RyxHEtg5Xa5uZKPAWOi4lxddmZWEuDDK5tIhyYcbZ84z1hWa01 z4mDz2pvsLS7Ey73TkijHZkQdAFjH5m/dPwQLLdHSFzqsxArnAFPtU2s3uQOyMqQQK/HqI/l2xyz YW+asd0tB9JwYv16hjAuWhtVW+i5zEMb2vLluIceoZ/z+K0cRvQjLINhsWY4kRgg0dfbiA/88twv XKrNXDDPxAgID1X/D+bsxC+V5zDD/hiW6weyWYp4PIqjIb9yECt9hsmwbhR0N9CNEjRr8E7apd83 CgdwqJOLmXJ4hHkw90XjoVvGnDmmNvTnvSy8l+voELaxcU9x91pNXQTVzMETet4K5zpTX7S7Rwqs mStsRlfs+4dZaDpwS7c+4pGZQcVOF6xit4hAYwOmxgfNDOJmzbngGvHQIwaoE0JmBD2jv3gLdUIo hlUfFCRQW+ZvuUkdMqqVGiZqXG7zvp0+X5ows0a6EO4OZ/qgeDN/N0vhinmCLjbSxuZOltnn7jIj i/u49LK5v8L2MmHek/srkCSvM+BFXyKYHu83iJM1MW4Jw9xPnvFSJp8FyPTzk1natHhDHIixG23d 08wcYPU//xjXs73xaxbsXJvtb9++wLH9Or5cClwDbT+E2zytlWn7Eb+fVABgBuFiUstB+1QAtSpR tLbsxM2YBbP/9lMjI/vjeogD0LRJhoigVqDBYjklBBxeXuG8G2LVHmPJVe9WJnOZ3WIG1E3Hsu1A FnQlWVwYFQPf2aUQTwJDcAg7brmYwhhass/z4jZbcrV3JPE/IEY40uxP81ff+TQuEwtmxDYxdF5h NhFX3suo/LmuWJGZpCkfT7nIUj2OrseI/Ghc5h+tNxP26zIdVJJ+M/FGRBTAFCpvxBqoYtwIhScA VTwmPEZdiVnGuAg0DsvJDzzrULU/OW5ZFzXKQUPIgJf5o1CIVsyiShNBUobXPPLNUPs0rFhDFwUy 0z/rIo/bxrMp/NxuDnzGzgNm2AaFli3+cfnnJxyUWrhJJhy60ugtWBCdwTI3gLkCtKlyWDB42Qhq eTwpLmCzSiLr6bCJfKyStSb2/kZ6wVeLjp4chhzOuQvHvMyavc4FvHl/5MroIlHHdqlsflk3m3R/ LKp+IvvNLKtbr9Bpq41OIyTZunF7lkldyHSsmbsK02phuiBQ5V5EM2IJqnneZeDZ2gp+zAOGPGEH 6jP191/OHW5AM050ev3kfVA8CsK3XtoKoyNJWCN/bMJCldCPIz4vvXsNgDjM5wG+zMB0xb/6Fx/F 3PWNCNowTf8BcZ8JiKwGr8qEeQ1aKXEvdYNU9v3VIumFEaVddage4Yj8gTl7czMUCXC9zeDEvO3j 0N0cOVeFIiuOVaOh4jFDxvb8HvzlkQDqoHbSrR4JDyC6o+2walZYVTgFOIbdyl0azB8/gQxl5tkq 3zfMg2eyfdJ8GsDHP8LSeI17gJ4vhjySqbE5GPYssks964Gfgl9XzMnVG6BywB6dqX95tEYiFksA L9Km2g4GcFUuuOesGJ4H5Nd85kKXx+IkUC7ADmIIGNztU1JkcGmfrUevoTNxR5M3bsuE6EsLQxr3 6u4Y1cOy5wqeGLclhaxo3bf4KxgNidZ1ln52q4MvzMKYDq9o3dEIc2UAPfoyA+qRGv4DXgEYn2da 8NrMGIJ/ViM2w7NK46LK6zUXSd+hTTkoScs9Gaa2CQAd2O6/d2qYePRkDJjSeYTnm5t4wW8E2sUd pIkXIKjfhJE/3sAH8AVSYkAEBezu4m241+nYVnQGn+0y2vkEqFWwSFWVjVcDi2CeN0Jql8HVr5J/ 20WIBRjwNDEr1RF17KpwNm0gD9d3hlIQEfn2GTQO4KAPF7Ky5iRBzMm3sySFhAWUkWpucIj8Tgp1 +HjADCdVabMcEIrYWFXhynwpE3cFMMSi0E2mb/W06fD827/F1BCdtn+0I08lzlgJNgh/1I83vruU laPfPm+Gl3H94viHv6T43dTC3w90ha0pq0aJL29xnkLYgUU/ut+EKAVtRnjMQswmhMiZoQl3QZ6Z zt3rDGAG16kaxjuK+4jryhi5KZpczdnv63oaQ6CY6+id13H5g4Ubf+Wrdr0WGkwLYYR3iHuEbDxb EaZNLcKa5Ij6fTsufjBNRbUtDDxY5jmFIDNxInPIpK9oYtxQJgxUpq0eLnQTDub13LN++/7nYN+U KrgFCkQ/KK6EHyBeXUpcpC6bNUmI3GCNjUGI8AbgpCpRUYB3DiGwkq8TOJ+E4Iwc2Ct+ElxeJsa5 dSEzYCpQKsqnWjiv4gb2gpe+OW6ES02IUs/sVuEP3+7beWEprbKjVPyD3zgfFGuYDfvmEa6cv6Ts TDiYnUPmHANgwkXJcBN2vsVG4Pt1Bm+aWssb28oRD5wa7nwTj7gY6lYtSosQMIShau3gFG6r13Gx Fu25XYJHcJXAt0Ze1QBlATnCF3uHGNfmKqpae4bYGNvw5nFBvY7LRG5icN32ofk7HxAjOLlq2JEQ RqDJhIDnthQ3G3LqtIRbEuzXUjwdjxJM+GnQLxPgSS9Kg84gOPmAmIn9Kd4TE2JbTDGkuDDOHYRv HKCERp2Rxnn//ufeNQ9gKpiU5DxSTsBQwbZIiMNGVnJGHCNZpVnwa3Tn54hZ5ACUQApsW4n8wue/ f/l9LJBBs1fCJrKBPyjF+nSVheUDCOyKVhk2PHw/A1YN+gqPuA+WOTHcZUIhqB6PfP723QT45RpL vS1ibg4oL8gTkhSczxyWjmeBOnUChqg285IG1k/Ys3KCGXGwH2v6MVwfrzM4U/syMlkCaKgVpbNM WFWxAqiRURgEnM2DGeMU+TvIJJ5tKsffm7NgOOa7d4sbJakSJQd7yAfFPbEIAQF9E05CrjyLEkIc fBPOdEo2diK+iyrTBxhMc4Mr5HUGXLUseKWRjRVeushGrEBdRgbhe9AmrIDYam0NHYIas/BLdxIJ yWPbCZVzIGV4TrbV7NMTX0kAXJOuczTpxKhtc1AvOnRZUdmx4UZjR7ke3vytlWgtMZqQFG2yQeUX p4NYaBHbx6zwJBVDiohrPKYr0X4JIPsaRmsIj5YciOmkJDOwBk8Yf94x9GEEgEYmFVbILMCKoN76 oHFZxlGGJTJz9q6oorPPjRm0SCyGsABWaKZ4Op+QYNYexYDvVG+RcnUba2hiewCOm5BJTiVsjBCq 5M7mADxsDyQPx82lQjnpg2cmohzmG4GMH9XuhO0niLn/VifsdG/Y2C97/txLtTJwv0xt8j6ohUEs V4u8VpjVsKehs5yDjEJuuyJQRApL6e37n7tMhcSclFMQfVC8GYLyg/9OMWIXNSyIEDKKVRmtfR32 vPcepFjzK/9D4naL+d6ExC0FjFxYx6vw87g0TQzmplpK+2ofEjPoQz/LhXw9+38pnJ2vwkiSPzrb 66NHeA/6aQKcWY29E5al+aofEq9K4zScPRfu+dmMNeGUbdtkNLW44GGchm1jwlRpsWJ3vs7gXjTG 2S4D8hZjiIMirMKgfPfKL39+PQtMgaNsfvv252lJV9XHAYH1QfHm5cR4VPXNyMi+qYR/xLNO7BBi qI9Pz44SCevXH+MsOu+WDf6Aj+/F7xQHltzEqNoyYR3I8S3E92sXTAp36NtP44bpthkwczggvdi8 xYJYnLoyZB0F5iUWI4SPqcS/F67TngUJSVGKzwZdgh4i0fI6gWv/fDoz2j4BijTtgYhNa8J9Q9NA GFUqHj/OIAjxZ49WgutwIKv1VGC/Htr4dInxISeUohleU6AhQwwetHoqLJYOoglVcWg9QvGN0sUF RdhrRfXf+kJ30HImGYsW/XViDBHs8CNWUBuhFCDqo0kcIbIbo60RcxPLiHfUO6xgy0mnlBt2qbOD VVZSH7QfP71VUufOxZlMfNmzomeURbiYFTXeBrj3xsBSyVjqWcY3vMIZlzaeMaAUElowMPoIxxTd p6wGW4NMDhbkl+3RIh5CsiBtveuKhCfX/Pw9gxnloIRXAPziSQDCQBHJv/eYSzwqf9qHJTmN80G+ //SFIQZ4dyn9V08hkXHHSVbE2qjqJPu8InNkWMemAINsQ1G/7qM3bbAv+4MbrAoN2pHsKQLrOKHb lHBXcTRNzQvpOJMiKOST/UoI990GjZmJkMpLN3hYyyk1SaqcNqHqcAm4MTakRrPJv+UfGKDEd/Nq ZJFieZ4VAywVtX6eAZEULZDMemfibQlI3qHAf0UubDGDCKfQ82NcnEP/8ypm3m72xaVkFqgSzuXr qxKWJJq5gxN4mS0vkKYqoRlQgQ+KEfKawooaMSYqDqaworkp0DiDJOkNA+zaQJJCCyQ3ElWYcAdK PbvLj5PpmD4NkHmKFX4401p0iV7fgHtnySFYERv4gHgGQMMZfhO5nBj3WQF5+ROltRRPXAFogDBR v9Dxf53Bm1Yd1soCmwVXHVmKi+vtEfZECjry++TGhL+p+XvVa+E5JPQpt4swj2QPuRGHvkD8zgEY 595ih7Efi5iEU/mQJPXLG5xXSwHH8IGZEc8oG4G4n0lQNP/OvBgO34fU9fOYTQN8/v0rW/9yNlT3 E0hbXqQq21nkyHPvVWIowCULv1cVnq4DAysMmKx1+dqemh+8MxC9tAz2VwZiK3wbPAK5j5OKAxaJ Z/MdwwaxfhwYaJ4SjBcxBJhdLLElYuKayOVgia3G24kgvQ56Dxf2onw9iq3sSZkDzwArc/NksOla xYumxdRnelafdE2HwtQAEoU8e8riZ6mHHfodS5hpubhVy5UhTd5SiMuXgGbS80ccoOgMr5IPuICw MNguXNpnwSYNtqwasMlnUfX9RX0LI9XLBTZxisN4MxgJO8XnjaUhOC7FOfm7CdB6J9whBPwYiBD8 WCNE1rVajJuiGDjylkwBJxZ+GhgIVLI9CchQ7m9mqEeirwi+ttKnxdAkPQUrUdqVwLguSqUUv+O1 UizyIginBMoef50IvaJma/tCvB67ti0lbksEeuNZpDodIhUhcfupiJvtckqNfQAA+g== TxS3LQYi6IOFENrGKVxYEmniSVZnxGraFPi66HS0FRiW9RlRZs8qYuxXCKuxWAFR7imwqqFEYX4I 6VyWINp4w9JmlIvU+Jy/UPrV8bmJNfKVKQIKdf19Ur1fAZKjbZIUeBwkkRQLhrF7X/MsTMW8qrIV NtlGYFSGSdjYJ+QzHKYt0sReJUNtBYpmBfYmzME2r3oZGexN5AUO5IwiZX90wH/sYLGxbyhM96mi sWdLml9257ywSgz/mhAo4BoVPxygBLuF4zBzVgouA6FQ5XdZDE3gTNIDfxdYCzE8JOKmGa/DdeVc 4ljxKZQI8q4hHIdgXCUPj5jY9BKhVGxQldtSodmbbbJun6pYSy5GMMrE+awYKKyKEC2+jAU/VeXf tB5BkxgAcFYTQkvUKNv/5T7/1JJ7mJ0DpE4xU32tkyPIXheQlHZgyDVuGw6wM/HrjIQbZyCKxats ktYFrK8BuuQAjqqOjwO3vPUrVjhQAOkD/HZCIfzza3PYYX1HMAT0C84GlxQMWTxivLG/C6dB3Fmj QA+vnZqya65NIMF6AU+bwc+YxSLsswHjHzsGbLVNjRdsuaXoSlyzMS+Yhc00RsUbEObeDDjIdz2+ 7zPAoV0j1qXh1onfQvqzHZa8u/SiFcY7qKjiWfK2odIbQqDQAPxjgno1LpfDOt8hduBniDcz+3ty G7EmpW6VnwF66x6qQQlUnUAegXru0Po7uIGbSpXtwcPquYXaO50J6lbOsB6eTLNCqbwSc6TV4iH7 rlR5hxgRG9dIETOq84rV6bem8qn1DpNNBiFcAdOSMbHw1jxhdagUpATSI4SsQCsRneO4hA4erHEV 6sYrcxFjXQxWePaXZ6yumGXc2XHn24thEXJMNoTE+KXIEsXfDybijTuCeKeheG5WIbIJI9rh7RHS GYBlfJaARZR4iKkvhRcWwpMLOrGoU5eR4mpj8LmWkyMKu6NaVIN80B56+RWck5EQMataG6HdBSog T66dfsVGkvTXd1FqBq8PBUhPiKwOkrAbLwgq3usg1sPNsSv6DXIk/zL0z2oP5QLxxBRm4m2XkHK1 eQ3Wwvn+57A9qHaue8kGTZkchtzfPbwcf9IvDa5MFl/JQK7eBsi0XjvcMFtDWa8qsHykCCTbCeki /oQLYkLuGIPs8QJr+VrYxppm/zJcFxYPGRCmcrnuzBZBMxWEoZ/uMMt6yFR2fi9NF4DZ8jsQiJY1 QVFJDgAh1qWp1cliUqrWq8qBzOZGaiwOFcI2XvM2HMBpj+PZrskyBZp1t9fKJlLO2MheKbUKkFmU NjRC4cMc0sUATXcD1ljMwMggaHpt4A7LFj1kVamIhX4WL7ZTwHqRl1ZroYMzagSsjRD8QZL/GX5W aD9GWqcKCEuEMN8wwLHHJswp4zQFWezxDIzWdZKq1U9bDHBr1YlyS2f508FBUt+Y+1Wu495EDADc xCddbcJK14IS1tXa/ZFJSGreQOMdpHIu69+wuGcZNSrlro1F6r7cJQQHTlOK3qA6QdU7pODI2qc0 sxTdo0VwiVLEB1qu4hF7NlKpBOTEuDlqycJ+nfmIj5GURIvqHD44DI28l7xHc3jQzMbtzto4boS8 lJ4vh3lzq9StXJXHns4jvQTBCjYqQPGZCYJ01ecebEpJZM7zMzr5AkNVfCxs+A74g5dVYSntA3sW nlhRbs0wRofzeTE0ZTOAiVJUfuc0o4cfOhOgRqcrX0xLearEGGnuX0HcKcIqx+T+cuLNJvCTB7lj AMMg8Rsw2mNNobReDAWaEIV6+eJ/8IApj42DCN8hXovXhZN6U3wCE44ypJi+BSvdLDi7eaAKGh5Y TLzQyKoKb9mPqWCWrGQWaB9VHkvlqKuyXNatHa1CZqa2r8Vna6dLzUK1fJ/8JaCWjTsFj2AHui7w fL3XliC/ellZJxpuXn1eDEaz8uU4DNkuvwXIv9usMYD5NHR5mJTKtxeRA22dC/Go9I3i763wnctF xFzOcdUfPZczIY3264XVljlHgVT8NVKu1rsxM9bCvkc5s2eEPVlF+ZsFc6xybXLWRkY9KeYUUDHe 9xygghihBsA9hKf8j5ngnCIPHkL120rserHR/AjCTifK7eR/j2dRtODuSsQe8n3uWfyU08UK7zdz YJYsqdqho3bntOqi2009ff09thAne3aWYG2bCP1rt6SlC9RY6NRzaclmqZH1eYf4hGBYUJQWoYF+ ugDdvANeJ1jziNm1rB64n3kgi1VsKNhMUwjNcr7CI2XMrrh3eaoUSEz+XIdHnNpS7BQYusEk91Uy mob0RrnCmemQrBQyhvoAArCS6TqZb7QZoVSQN536J/mt9veNK64mcS+/xAnMQ1ew6NpYK7TGa9hD KSbsiv5mJ6+JB1kTlAM8F8N2xU+yOjRG0zVCeAkBNw+AuF7vMsAB6ORbwKry2VloM1yj0j4pV2GZ 9UybMtFw8KwX3GBsbBHV11QQXa4ITurk7XJ3o+PRs1oVxC3Pg/Ra0R06/r5dJgtRK6cCiYXSEGZ1 Klz9DMBYeT64xMaGHrsIutrVOAA1r/z7IZYr4q4cds2LVdDVqg+Tw6GLAapMdTR7h7ApPgmimJ8h 17xrwX3wy8GELPhXNMBgp4PWzYUw/RGw2TqxYxdI9Zh9pHwtomtKoCDDn0eKa6dw/mKqWdEA9kM1 4CtcjXTR/xjcfzHvxaZHhrQGVs9QTJQhi+I5K+leuUCOGKhE3l7dqaaAl8zK76vs096gMms2aHtb w7rDjH51Zj7xBDa4MoR7It2F6quqNmy6OhrY5khJxA/cMEBkuSyslVSvKIlHrt80LRK+C+tcaSIb S0Q+e3OxSZn3ceYAvEBSpKXfsb1P10oWV5va6KTcrOCGsq6KOYuQNB0NQdKDdKCuIxItIZSKE8Xo UntPG3WxIRsbhpjey6L8REGTCTdhbSdllPoFEkPFuP3WZidC3qojgs3xnOxmE6sZosoOJ7Xeva6D +VTnPOnjXB2by0Kay0fIWEaKKkPclIeKxawNDjAFhwY2OS1RWyVFMf3+TnzwKKilSFVSR7Fk6S0i egaI28wqiPKxQxSAcRfDYgxbmAHQeLwBxrQX2Ex1r+uqJ+X4/l0oBHsrdfVjTuQRoijbhZMGBG6e z/t1qhACmVFeqSQzRmNAbKJBcIvUcVe2f10NHWy/LDaDssLFd16UAAXOOL+4ewoB24MWQIvBAM+Z p6b1wDNZhJ6cVAXPOuwRAwyhLkjzfCkIRzfMLg1BlBKbCJg+xmeYYetSnf2ETxdOiZX0ppKDPcEh GkNC9GKasYqcGDGQU7y+po4wW9vVugDPqH7+OQCBpzNgvyEEqZlXofW/U8iGi9V6V5ltogsMaK0R MAPcgZjDEITLiiHQHGRcJd/nvnQib4ZDUrnIQHWiC2+2NQT6/K5iLcTgkeG4mC0azY6gEIUQmPlx 9TBK4sxwivNOk6FOFX8kmQyg7Vk9wCnaTCgX6qfcp2rjNSUbbAA0NASFkIyWzhpvkr6ZsLDijsV1 CWVG8VPiTEtN7X478UK280WKTyI7+3tcbFdngCgHJ099nSnruhrYjF2GehdqtYsgOin16BVX+UyL FbSHjzIpFsBnafd9KT2PH4N5YCVDXMQRi7y8NJQ9agd9Q6tkOud8qAbndjUQ/1o1NGQoQPa4rWFL US/WkVRkjUL7qRrpFkVVITx9FK4+yj9WkOcwn20jrE3dzC4TTaSmaYhk2D7yKSBv0DMtGl2cYRPW lmBEE0LTNAWK7LcmiayHSMlsGQsLwtSgeVyTJb+I+TX6jAdtYwofR6Qdb2VE/HN94jAAG2JsLrGa XSZCU7LVPmNlKZXqvs4r9Ij6cwBaLiAm5dLU1jAEyctMuFkue5kTYJi3UsN8LA8Uf6wu5Jndu4lV Zjx3U/CwfoXUzfWPWJePqsu4sdIR+dckAI9XjbUTIoAX58zENFFqhL699wcumyU8YLswA37v8xsy 3WLPts6aQho+k4kwPx6X4UQ43ikKTzP6mLkQ1twS9rFcUB97Lewhb0e9aDclshXIzF6h7WKmarOW lKx2HakBttoXMtRlTeg3u6fUc2TMXpKOrIySZHEf2tYyrC/FMOm8kwzPbT7VHi28oxCC+MTbwGBq W90xW2QmGYMCGsIJ5DUA4oDev6QyiljRprZHlocRO3g8pwzV/r7qzIBy2oWbNaSj6/d5ux8iTAsj olFvVfDdhJWq85CT+wqQ5kJhZ+Uv1gn6pv07tfTR6Bavi9jqqiqsSVtlnSakSIT4l3GyifOxX6d3 vkUdXq+zwQZB4KKX9Y2C3QOHsa21Gi4EYprSKVeo8U0UQ0TB7uGGsqUu5EbQR81EjC1v667PN1ul 3oVhkg9vOaCP/CgJa3rqgvKxrooQKo+QlmtVTM+iy2jQUCP+x5A1EeQ1anNCSJaZg5HJVZ2Myp38 UD7WXgExGovaQ+1UFffmLmBuDe3LvAF9hRrxazwLE6KQSthkkfN0eglNYDCnchGX5PvmKurFdhhO DvtiHuQztJOh4uI8pCAssYK8wQw3e5GMIGSj85ZtVZ92yhju0Unnl2egWIve1cTsJ4qELceqq4OI ZQEL1QDxu5bZA0UCND8HOL2Y3I14R74MBNxeCz3HESdWqZ/2SJaJU/cBQhrLqcduimIW5Qk+GW0l a380tRG0AWQXkKOn5ECmLLXA4QA0UqvYjU6GcVVxzXkrxSYlo46YSfQoB0pXTlF+VX2MCVFIViN7 zIVkoV6T31uSUOKHEPfnkkmW5xbx0tkAmS0clEBP4sUoseuUJAV3TDlt6rMIlyyrjmqpTHp2Ozhy t2wRERIoKmu1/p3oHF5u1ofTFbiohr8o4WOnlPVaFupkR5EzKFtO14g6cQI58BkLmUSmv8lSVaN5 pcSyRxM3DbimY2ScKEurwyAuEVpnEr7iSJTIkIUwiSOJlrpn8Xv+qpWsC6oYY/xq4MQYKYCNpOT+ JsMBGa3t5wZtL9Z32sQ2uZ4cVaH56iZzTj+CEdjRowXGgWKgHNzaBhyhsqmE3eUzkhvl+P8GKDqI CvITna7CRc0N6PP8ckgGImx2/MmzaNLOe9ORBu8Qg3dzNVk+pV1WZUmUsXoGq8hhWaQPyEcIEa0/ HD9FUF6flQAdXaUnVYi8Ig7lW9UMuWd3/rYMda6sqrGyASb7+biFDSE8wRLAuT+ZATT1iop9aMsm t7NEup1L0DOveSYli9khBRX79JHL6WB+wcZKZW5+HfLv0hT+OATZpamGtMZUBLZptJ4aiADstybN tIaCve+4wfBspZjf2+7gQe0Dx8r+PmqwF5hvtDcrlZIDxLAz1FvHFX+s6xpcllPoYy09peqK8oFl XAtOS8k+TcRv10kwWaPQRWoymWplXGXvDvnnsOw6VCI2RdAWz36JCfNpeoNF9p5BsTatLTWtHjJN S/gInEWRemdjQu/GTQ6yzU1LH6CGZuGfs9dYPa2Zp2yKKqrHR0grulw10dbhG+3pwQ== dc3X3VKiBRSHBlxLtPkZdStTN1m98mRlXbvm9Oopi2W7bvXqW66rkxVDbF5nvHlO4XWUTUyJaYrT J3xfsZWrips3VzsA6MRsozlTiiTVFGjVMHZQ11KTzOYqTp8igBZfgTOg53Wo8ItKjlZR7sPmelxt YdPtdSu9DN69m9TCq4gGpBwHuJyGLVYIP0bnBk2qIa8Vwr7IaMC68nKFwmoilso2LboS1aSWpDlu c7xplJEtOCv6BIjsZFWX2awCU227PvOl2qRNVRRCsLUKnLP7KIUEBV19tdRlGEW38QaHsmpFivCc MGy4RJtKb7BUg18uwGdRxwonzRgEZtZA/K8ihtEyw5aDktArHOYEIAS4u8vmGS+wLO0wSdldr8vA OOwSHabEBmXCdi4xJ2Tdo4upQv80Mp7W9cUc9f2OFS9w67M422x7ByhvZQHt7HRgH+YrMm7nA3XB JWpLQuh8MzDKKiG2yIB51Eco48IW2XZsYQHWoh5v7Qb5boXWj5lV623VIeFnyN/c5Ns3EoY22Yqe D+QMgGRlP09yjjKETPBziQhi/D0B5JlQXntX4TRMLAuDrqYJa5M6i/xVzTLc6o2ezix8u0yUmtVk GO3k+CT3t0r3DOaMOFaJq/wdYrROsW2rGkyfLu8LhknrYTY8DDIGtVZHu+OM2BcDces5I8bQith8 FjOHrSu4MvBfb1rusHLQ7vL9yzpm3a5VqAZTCWQUzVK0Oa5RrsNhH3Wgs9bhGARyUnw3xt1icDp+ dgYjBEr7ieq0kqf7InKyFUMwpERDgl8BxE8MfBzgaz38Treh41B8tpz1CpJfUZOB6yarP5aVIzQZ HkLS94svjuV7VnkwedtQL9bGAi27mQSsq039qqtAfBWlawvdifCcLuxDwGizUqQLGMTa2QbCOYsm yzHoVeME6+87kzTu0LHy4UQViS61YplCP1OvNUQgXK8cr1fb0EWjEWtVKVewcXO2rM1HvEALuxho GorH1KawGLwmikkNd3pv2GdAvh9HK4TndpnMtXtFhRxuAEetoiIxBZfgXtSq7wX+Yn5GV1FhDsVd bJMaehSHvEX8BPO/CliABfVHEz8Z6iot9sQCli7LvEcEiMsF4iZP0SzWJtFD66rG9fVmVO2ENu2L wyjtAcmPD0Yyw6bOTa/U1THAZBGnu46L9WyA815k2yZspDO9tvIk2s8icIV/jxKJ1c6xX4pMtIiz 8O/ZVxtIuhCikTEniwl85c6OcQm4QJsCFuqtybvF1yjE3xAGhxgQ5NXEMGolgFVZQJjgdV2xvtMD 7xngZM91Qx865EOQbTy/TaFQaZSWLgJJfoiWrqgcCweuAeqFV2sn1lYVrHP24PFFI3zHFByzZcSi RpgzhP3csBki0n6X4zu2FBXLoamRiG13D9iBuHfLulPMVmUlbCaG3Wy3i9MYwUq7trgkmRTTSnU5 kXTHbenmDz/riGbUfiV0klSzFXxWwvY75uoQp2PlNW6LJQ8CPaethrTRdP20Nz0Tg2uR5ZcLzkYW Q5LVZOJwgPqYfz+jLZUTcg8WwaJUaZXDH76vD31gDjZuJ69p0UGcU2EZGF1Lqa9y0W5Y/edgTHaU Q3fPCH+RD2h6QPEPpsxNOBnoOB01jC9fSVQcCytV3ZoVQLvVSucXdp+Hgvj3WQEJ7jUbALjEciki ECN8XtYhaGdR7bzdk5NGlEOcef/ST1kq4/BCTVr5V/knKlzsx1BQbxo+yYw7Vv5Qbh5QWjUSSDwE SOnYHkKYJakNZd0yGvMFFqzgAfJnfeKsxaaOTUGMHcKBFFw5CqcoLwpq6Tic6l9n+xg0Oq3ooi5x iUBY+b6n6qL5TuOZm3yU6LXnbCGUagXxUX9qL3Z4M8E1AfM0fr8qP14EmWpV+up295o6b5oLxwlU 8VtlZaqadyicWMLDaNJ0klN4DCEkJiV55PgXKBioMZpKwJraRq2L/aSLYDgdAoShHFOOnFgMMJRr S+HRHjrazt0xj5QXeA73mhwbvE5yZBcpRicYhv1CeFI3KAlyRg/GXhyD84a/z+pKvm/mjZO3Jdai DZ3SrOBvU+U2qV3fNMCWop0k4OelfPJM37Hyhxhlc/4sfShbSnA6lQuw/nyNx9xjOBC9TY2OotA/ JMWj8U4AjFmuJjPX5yzKLtgA6IdR1Fy0GRyU8aohs94G2Ix1kEyoneQCYP+xS3fmBx7nEq0sirwC Ts3Khrm6CwCIVokKZv8HDoDuUveS12AKh1AT+Mqby3mNr0ug5mqXL2yzCoqJVa5WpvYGixiMvLQE VXGCjXi5CZH6bdeVZewdg1ToBMq2TsJ7s+RoXHRBCNpFL2bifLJXfWp3MOlYleFoB3TeFMhvQ0q8 XkWgdiZ3YvIZbWr96GRCf0goNC7z+2RY7fRWmq4e8uLpLYhKHHxNWzqSVf14nHOmKajBtGc7F2dV krYdY7sqyuiUQPw4B4tp4qWsGtlh1gUxKfAhnBeKP3U4iRaL8NcpIDdhYRSe+kcUFUSN8AXobtSo NQzhwg1bWRBhsqg0cX9xHoafLisDYWYb86SzgdppS5nGcmxPY6XSPbRFn2d8WeDJO10sjStqyyDa jdRcszIP4ShvH7enK4PoV6E4zzI7SIhq79SwtNObNbM9OzMAbxigIyXewlT8FQ2cJhsAeKAlnqQb Vq9ePkZJl7m52LSzZ/mBdtdS1oDcukN5PV9GaRcZ3JUUJHtfJu/EuiGbPV8ZyIrEt3fOov+x2Rcv K0oBU5kDEKlclGw0IdDDJaxWLHahUeg2jmZQeDn6K77ziymMz07W6YpKMa1nQgXhPG3IL87s/6kl 6wdploVk70nqNwdUgQMcrc4Oi4d0NwlJagyEcAHTdX/Y3yMsj8YYWESE8E+p/iNMlf2KDvjX9uFU cyQ0GO+oYYu7JpOPD7VoK9+9vLOwIVkpo9OIzK0Z7fjzBic/bntThPA8YCYUdTzjNB2FcbBUy6Eq ZPowH77FqjhRCoLQX0EpC58p3Q0am1iGk6goelVm9ZRBdfUitVcQp1Rvl29AHEt3piqY8OKW7Kok sECBvmJTRCRHMoGtGNGwz5aRNLyd/Dr2ugXn3sKjCXbiQQKaeHMA4mOsOyJISJMabXl/Rhqrh0jB 2gCizwmaFsezF68/u68vOTI348wzALOP6DkbQmKqsjjVrRGh9twpH++n6qeo2P+0V1yfGrgXKeWL R3iSBtI9Ws22LnrPDJtar/jF1NnhYrM3Q+g2Hz21FHrOxHP2zaplvyrUiHBJz8Jti4+7L/gBIpmP bE6m8xe/7RZYHHH4N/z9BWlA9MiEnR4eK7r7UqFbCeCzPk2h5UdyZJtsYwaVyMtrBWrw/Z6VFfrK KtDfISYzMTIxFB8MmKY2hAa0IdhffAEbU+73HWQsZNoG2xYouuPR9n6n7YWOv05TObq6q+SzCJZs RywqfE146Gb7Ba5boKAyYfvq8vR2RVFODY2pBMEnaGD0w0ucgZPoxy3JV+C1o/9UiDd/ibbv8TWM NTjRT1cDGHsUvNf5aoXY1QBq5Xt7NlKLm+qodBFNLeIo0EHs4PqJJ0eidXLigNdpNvct31lvTFcf UVoKFSpLYDup2kQjkZgOI7YVmEANY48T9WkXGFZo0ZETNZexGdeT4uI7MPl38I3xtowvWdqCwxYh J1jnYL816IHwveqFEhHwwaQ4M4dQ9OLrbfeY7C7TrmrD08PUgbIaANxNLhzqdrrYzehwuX0eYM6z DdCL10F5jd2AvXEGnq1nH9NjK/vcrfu4bJxCU5ighiMAIYLUNarZeOhoX9S77y9bGzRVuHrL2czg /zGesVnUytgipAzGL5BpWMttIkZFvNKnTLaqPbHEen3A/aZgUbDaLjRKX8pEXj+/SfTlyw9+661r 9m6J2ffVFrUxB2eN5lW1xyW1TvGFGHB67CNdFWtpUA2NJMj5mcJId8kbqKy9JfxkPzCRSY0T+W+s E7JHa5Xrop70uWphhBIa5uYQMUFC+3ES+E3k0qOE4x2/NMeZADdQi6s+nmXA71CSjawQUYuKXQ5w EkWe9scA8Iq7LKtR1L+sX2GTcfodHqyW9bpvPMUVsPTh6U9mUs8AVaC7EwQYTYn2pvt/dFmtd3vi MQQQ6aooH1O4KLusIhgzluCy/WrRM+ZVhOZXn2+v52ly54+A4VI8M4WZ49Ir7GImfoT0QC3+gp9a 8oi6qinGIumeVQ3wI35KTtLNuubUCAEbIpRZp3/bOCnPO+07ppq99uCPN+EWFAVwnhCCsc82hrJK M4mSvamybFhmkoErHoMd3fxiCyj9MLaify1cjHcMy0R9E9JzpqtzL1ohzUT2HaZMOa2jChKQvTML /NnkfM0iEFwLtE4MkAXLaAoMzKLEc5e3bqNu1qDVeg1ASFMXL4ENgPPdhQedztLHIhFlluzZwR0L JTurABBNNXezXPXD5xxNO5+Fq4UcziyqDzFTqmFQWm/9otGYlYRLHqMLA3CeavgmqiETooyinSzo rGoO2HU/zXZhLheK5WYjw7kNqpj57AJ4HkDAtMZ9TDkTBjgNJUDhbkwjz1OS24XOeYQHkkBg8Vwq FALEOAZYZAW1HyuMrs+lWE4HZcfcqizrTK4+MubL+uXSzh0bOg7SpBqZp+jktHU3P7SoSBRZFTMm VXCYBVByR7bX6+cwgLAWVbJTYjnkjXn0hAAOZvjN502cFakgV4qmqjGoKJgsntCo9cgtaEKpLYRO zWPOBaX8gkGa4Ywm4+Pq7mivhdrToVS+L0Fs+RG3KxcggQrgwPU80tPBaHCw3eu0yRxiDPQoxSSb AA7tyiT8tokJlOwgu4G3iGTKKoqFzUg+hpCKYF5oUkbx4vcBoGMeKH4K/r+7TxvUCac6fp1OFiMs p3eImZDuYuDzNVCp7ca3PXWH/YrcuYtOlgLGbNaBBqqzsV3PYNEYF1eQW3pcw4TLz1RI49+TD833 aWjOcdkwoe4a1zsUzzows0EugCUiLm/cyRyel2hzH3obo1iYodBIF1jBPgmU3FAQxSg54OqPK9S6 1EXAuSoGtIGxJ6EJUSdS15g+kOMdSrVZw5FZQQRyeGSNtRlw5UFc4j69YYe6l5oQKYtxAaO9M2jB 37NixuinCuk2SIu6Re23xpVQdi4d/BR8OWO3AapgRJE8fh/4quntX/jXrAKaQsMaGbboQvj+TswW tsqMSsYYIMsXHAwYGZEqIlYjXjqEbj6fExt/f9rajOhfZcIqM3aIwdu6T6CYa15tybfaTdtnA3TP eeFJ5dJa3J5brMVG+yKk4D58NKD9CSEzjVMUIt7/kEtw8mm7Xh3tmHvblWxR9mNwcneVg7Guegxj SgRXxwob5x1irvi+Ak5BaJdCdfNBkmuxI5n9EvD2K2wGrjUpoI7bY9x06lRIIkp7doiECpahCXGh 7QuSsPNFO8bMgm2MpD5nR3g6YB1f1ideMIA7GO8SawgUG2/dfzsp6+Q9Xxq5uexs/A== gcMJcKmztMVXNHYg1Fwu5U/90tog0jpZBL+fyDsGUj+/W0hQxsyCndNMxqhTHLCcr4mEbECGeJ9j tpCjO2XCKT63LF1InPcODyqEzCdugb9dr3OvHEoQM70avwzDSp7LJc0d026OqF33N4wBqsgpU6Q8 cUdsdh4kPsEvDrKGne5xXhElLjB4IxZimqRI4zf0gPPmXEU+YbfyIcVruvym9hFZTexGRH+UdJEU uRGlN0POxS0+7jgWSk9zp3gQvAnCFzvSacNiF11G6xYbnAnDWNjAQMYAg56uiyOFO42cUpx4CLDO fu94fYV5f3KGeOe4+4OO8DPtp2BG7qu83X5sqPMc1PzsulLP5pj96q651O3HLP/Og+Bf7J3iwhZs 0P6zieppqWvJFI8kdSS9jCGFws6p86A0pq76qVYma10Zfx+Avb8mUknTC0N4wuFpVpX07DCG+Pft NDVD9P4Rdli4arM3q6hRdkAH+Pe5kpuR8ZJZ5Tps3f82AbDtpqsM18aNI75Bz/EO9++oVFKrzxOc WcpszGNh71NXMLOyCjsAUiE882qgqrMnpWMOT/dMYXzFBADgmUlp9K2Q+EyCRu6IQXMARme2CrZM iOThFujKogWI+ECh/oHYQkVEeQumMna4gp/WZajNmK13polv4s0zEzegi0rnyyqOxF5zOy4E/nkd 5/bZDBhNpcYXKRdPeMo4BJHrHYPtLT+REI4R2Mm4rs1TfIeYSjlzz41O980eLaEiRg8GzSA5FbGv PRvGgv1afJkhyJjLNgc9m1skp0PlvZc2Gp0FUG5k4u/H1b3ePSu+FunCthJs9lvaGigAG12YXXxg ToBukvGZhs052kXIyoD8UOtRvCnjjiTRTwpaVeJLbP7oiWGBzyBB8M/CoLhFZIdoIOFrW+x2y1SA cT6ynI4dEFQFjxMvDzdP3yEm/d9WkboFpRObvrghGcJeSWd6Ms0jsfPY2qr9HAeOfnox+gAJ1qVf ihwAdL+uIu3JDqZK3H6x2H3fXKTSJBasFz0lCxH7Io7Xm+Fk5ljROWiBQYjpgqr26sIxbDUAAVw/ nlzqGzxPpp2Iyh3ZyXeM6tZEiNuVjUUHezejAC2Yyvlt9bqztAp6Y6Xf1aDBkrQR4nNaXjw6mbd0 zy5zzEre0XO67dHE08lLuR/SbHH9PjL2hkkXBZtng7PsrUVoRJu8vQcbZ/ag5403bXRGTKwLiTi+ 3i9dTLLg/unE7fP3Z3fXkwxOi33SSZLVuxyvfZEq+LDsG6tnm8pGzzXZTxPiHVcfU2srq9srkBVI csBO4JisZLpNdnu00pL3qlMm/Po6lrjy2V3NbDs4ty1Di3zbviEjTRi2ffqvtssq0Of+pvHzX+En sbZnRy3xB8XnkwEXZUIUZ59Ptg+vy76MIBMnTo2G3D45Kncovv39P56J5d/+rQ1iveJg0M64YT4g JpxjKg5sgPdRFXUAQLmINmJegc1W2LHvEbO0rlkrhtk+K9Z291f+1NmOIYrNzvIOWxYXMnuIdmVa bwfC0NQIWu94g3e+b+b2JSuf43vZaFpY0a5Y37zYwGxe8FcA8cGLobv3lLvTqmCCVrByKgG+LDg6 gbdyuWKZ/cxbUfn41gVlRQqyn5mAaodrdV8VONaLD/H0LWRmK2zdsrb61lqNw6BJKR4bL6ig00aO 31Yus5otrV9ewPZ/wjYryuKs8Hj5dh0g3XX6OloORI19ieE+FELrc13Hl3Hfz97uTvHOCI19gWg3 ndgF0MSdKMkF8+R4L45m7NiuTQ05A6TIZwFcSeIeXGrsaoNCpa0wxPj3TMQvZThsrrquWdHz+gJQ KT0piQpCaL4Zu3QvhafbDqchhMgGtM1ONM4SrTKXfZn/riqIK00z40U2SoNtDlr6hY3xOjHM2OHQ 7AjmtYwfEEO9+sXZCUongH2zZbW3UeVl+KlE47QOVznHVF5nR7A6hJftJA4qE+soqTXpVKnojoAa hDLpksoOh0qer6M4oi7yyws8GuI+yPx7dLC47CyD9esuRBmWQ/2H7sJyus7WTXuGtRFDjctSACXw op2222G/tg8QCKQwvkIECJWLhFz//Pmuw50LrR/b0ObjfkB8nH/4JrkE337saDio1tKnkTH8UNfn E6BcUbqG31L0gheTMXQW3hW+HDHA4fNcYpm09jeb+oyXv1GSgn1gR9jWBzBKzEZf8JS5GyNlptMD Y/N0urHdUQ5NKeLR6zKNbV5ZfdbhzVqvHhGGA0D5urBvR7vlroTHDDfnA2LY8x5sJnuaM0BS03qE NoT0ddHr7lf0owKwboY2iEk3ETRMMUtbN6iQUI9ZM6rCfMkURXA+scN1FeBnRQ8tvAMDMVcxr63f yfd52LHWVbRszaTklZM0K1scJmNQQilMiMqPFe7bHxiALtkSt0AGjRFu0lAqubHTuH101QLkqhL8 fYhEq1iZtojAcxU/6r5KJm0JC9sjnIyg/ZyaFpAy24SZsRGeqKrso4XxqVeyglmeFsLnqvQoTAeA 0dcGRZOofPSaTWswrkvW2LMGphmyvnhZbIba7v0y0OI6R60oNtGkYuN9b53G1D/F/+YNO5Y9gK8f 6+RENv8J9rE/OfBkUhTcx9WVgQSNHQ/dLewYlA0RUF8/TVcx2lLlq/2YQq0bZat5qK5oX2iQPNiN yZUC65eNTbVoXDbOO2zZS1Tk+TASrSh2jXFn5AzXHQfI64oIsvQtn9ImS1BM/f2WqUij0iYweROi KsZl8sIVFs5T5EX7UPIudW49jUKMd3Xx1GzdWj5XZmi8gPod4io3vAOfbxytgdn0NBKamG32Z9j5 iuvmTQfB9jL7FG6G0Xc+5LdbjUDTZxpSbS7xVe+rge/YDN3lrabmyW8BPTxoD5DW1/o66tySRyxd mbbMPLzToPLL6NQchrbF4mUj2h1UxrpYdPFbCB1lhnlqC8yIiP4jnmV05HS4eIQsgp+RoP72ooFN dzoTW77WdMQHxRrZqZGjtryqeHce2oAi6vNxeKFODnFEAtDfrp7anHmIVbJqTcbpqptFko7WaxyA BK2PMcR21lkcjT2qak2YoorXRz1hnpoFQxqRVI5n2QFgqNTRGLdAvzSvNvTG0wb9N4Jx7RdYw9gV BP6EUfh1vqvbffH36GaCF2t8lpCQoUy2CbNgA4fk1maDJ1siCyERW/P0eEX+PITCVhnlYuP+aGSz HSIOnyoksCflipTDGTtV3bTCWSe3YV90nxrgAD6HocBm4WQru9ssYZNfxS9C83z/8f/ns7cw9W9+ LAOmsFTv4+/LKCx1elGLPqapYgAPDOLHGJQy4aSzSAfQhQvCUzBqZJQ4NVN3UFHzbjPHKmhNuwg8 AJqJAU6GGZ+X5LLH9Ess+CxdmZ55qUWnUSUgzKvHJC5UNwzxGhEqPvuUQVSaCgPnlUEy4tuRZamC nNQKGrRJUVFgPYcrTdJTBl/KFbjxXAwJfclxfTryGL8zEMbzMCSeisd55cZM3Oi7nA5j5YTXVpTJ QggeiyViJadybsohkS/0UNGvQJ9gXo2Dioow/85LNx0u2CyKFBRs4V2jEeU6aepSFDu3sqitv2eg fanfigk3QySDHI+GneOcLo7Horop78pJ4tqiGIkYyS2oSL/Hm+rEAFUws324UevVvC4jCVZO1x67 CA+bLU26E+Bw+mWeHNZPXyS/xv+YdRiIz10XM5+JN8OrzHpa+2xsjZOdLE3kczuyNn/wNKEBYSL8 rqiAxNN4ULadx9ldcxbTmvikrBrPM/tgpsMK34lC8bSM1qWrm/VpsmYnP0LXdORDdWBjmuGjpEI5 lB9b/cEuOl/YVZgBqFR2AMM0g84Ub1+Jr3BihyIJHoK/R8qQE7j8Hdvb4gNW5Nwtf4rB/baTXDF7 h8G8I0n5TFjZ0+/ixh7qOZmCAojjopbo5FgPsan3n4NCW4pm7mt77ithwlhrWerDnOLmiSdBL2A/ JI41Y2ENl/oyao3FFS3Uk9qpFcCzjn/HAXZQVtkAPUIeh4nXhKSJs8KADPv5lJvXpNyrIezL4WxE RMy7nQ+O62VYMQSttBR8Dy70UM0fNIfQItoi2jSn0PeAWDTMS83tP60MCgZ2keWEdGH8PQqVnfOW bW0PitFob9V/ln3Zy2bVig3QtLKIRdkvyY+xlUUL9KJkQNn0EPdhzbVlGex9evL3JoZzUwLW/f6X z4tYVadmNmVmD3XxO9lFU9Di+RTiG51mZX9iVpLWdAlZ1FTT1aw2q+OH2eDBZ+7P7vPJTxdb6DR7 NFS1t3FPpFY9rexPgUXN7GlnuyMN2fubz7IHrhGNAjCRrx4HPgCT+1RqRiQrIRlnS7AfIdOauZUL VYof/cwJoHbHtPLxQop6fJ6Is4kV7qDFYIsYnbV2IpzY6asLDkISXWFi/JLNKPnBe6OuF8Wv5QRw mOkvJQJUPdSxDqlq3UQZufPFUUlmsw+nWaI2WPswLp4uS1BCWm1Et5fyPBXHItQcWXNPGnBfZDYX LytCaSTerCd/BNhHbSqWWqIAqeqvbIbfvPhPyaQy1UXAWDLVn5GK8tVJpfc6RYyEyEV4r4ZHJoTW cx1iRlPGzF+f4pMJJirU6N0m8+bMMRq1qYAixyEyIjbFgvtIh0ruhKMXOSmH+tOeEKhzXbLvLe23 ulg4doXJjItPtsdJaDpFHwEgq4hjEaHzg10wikJ0N09Xh9v2bN1FoAf2fjv8Iltjthx0RsDaEIjd EhtNMAUUidrMjqX70Fi0zFCEz3WQB66pI7FnA5X4nERnif6rXCed2KAGIgS87DgpbMR97CW2+I7K ZVGwVqMd1ukr5ZQvS8cj6X/gzZYyOQMVry1r7255J61cYcXjIdkqZMWc1dfTxJXBVfbcNiG8niW6 ehNuoj39Oua4xGMfT6Rlds9dS5Qs9nEmse/XVsiKYW4dQKfb5JslAJdbEsRqX2VWLalqdqtJ46cB qAjbKY7ZVwTMmAYTs3xsb2JMg0XAZYS6WhKX0o5NpQEaISdKoVpcOguonjkqG6SscJs5QJtUK8yT GLWpGuWyVY6dJw3gDmecxy1fealBQb2BywyQGAnjOn6HOHn3lZ5ynROnHLhj+ijUCILBKidqjLZT z2K9LibPdYy9faV7T2WAvYK8V9Z0m04CRut4ZHWpz+4KWkPOoAb+/Np0dV2fnASbhtego+unlUqR ZVYng1NRvQGfvHJQdp5ZV52Ys4kWJsHUjND5RBlO4fYyIUiLPgmZb0PMjuOSXnIeMs15lbiAxtEo RpeCGDfb8Um6q6nGJDbUHfvDZ/r5ervhGEvFnzXMjQ+KD603rBAXHtK1I1QHq7Pu/ix50Wut+vus QTvZ1Q6ZwCmPe52XwTn+1T/YvyWwkvuKnDmnot608/QdBqdgCMHiZ92MO+v0FH5JRSyeUyh968ic VF/FluEvE4AlYUMoMG3k4JwYC1lnEP5yDhWhpYaMa8pqTjMvWkt7M1CZopXo+7e/Bg== /FBSobRdg+Y4fUBc1dadXLMp02zx3EWUiqV0gYGvNqopmIsj/4KLOGUlWtL9HkDl73yRt6YUyOCw +RGhslE7LRSnVgshahto3HMANDi1iaGUI517aUe++Ns1eNPioJ7TPD0LvHNx2HIel+c7xQF+dY9G vdmzvL0cmvn9+7H5ReQdkpLog+JJSk/ajIZASGQ63oC2WevOwr4dp7jGni1sRcFiTcManMZrhR01 v0wAy+HsQOxK4CvmM7vqNaMjZNRKNuHCStR8h5DofdQsfDssfi9v9SDtgUgJrILl58lxMcHvkNdF vUE+D8t4dlJknF4jGaFyf2lWTGYPQ6KUNCHqlE/Xm5u8/XVi75oxsY5gmeKMT98F9uL2joSkKcyI k1kmsbLDgbeA4A+mIkrCrWwmC3XrnTolO3CNDNPb9xPjjHuQWYXLLySnAT9CP3rUgGH63NlceZff 5Ze9joHBLcirabuL/gEx0Uvom6TeeYVU2IcN/XWQMzpBtiWO4d8Z/Qfxl0HOwoAucqNjDRcGhcgb 3MpcAri8Xl95luvLGBx8SSekWDvuE4QoTT+aYcQENyxsE6MUJ4v73yHpTPl+GRYnqTQl0Eqg/T8Q aSVBdolaccawCYGodyvFpoq3cjG5vo7N75OF5S/RE+gDYgLkSyAlQ8gagavlUxYa5aYx/2kAdL3a h939dQZcDysLF1TP6iS4HihgpDiE+/jw7DHaxXK6w+Ri6JrNcTfpX23Qydoi8vS9TuDvzmwIwH/N jOyjp1DvNQGhoHpSvqgpBTAmUSmM5v48tSlyqx08Cx8Qk0gWRQTvepooOKosb2jHcAZAtJaw3SzO 8NgZ86UksNsRxoWw6QMlZZ153+0gD1F2dxOerTeeqjxaitm9pnw1gHKrdNn9x5RiQzFLER7Voz/5 5L0JJj/Fw2WKCslmq55+X5b2gCWGSMo9y0WwRDqEowAeW7cYcdspKFSFzQW8ITyCquz/6WVQ1aQ3 n8ZYVRbGJ8p+tBpf0VwMfROqGI1Vlvb6Anyzl4E/IKZvmFWSUk9DytNgoKhHUY5kJSdGAud8HM6q 2OOhYv3uzXgEiRarURYk5QDQcb1aUFlqDOHxGjv+/ftBoBVrv8gKzwF/xIzoZYGr6mFKzbTOar96 e5zv2cW6lbRX66neyyIuff39P/RBambIxt1jfhB29FrsY1/LhRatQw22WHOwLkSfPTsFtoSx5V95 CxykrfplAtwq4zZ9LSbDmCsDpldHEXCOxCW1E3tBzcVm7ld3t7sVZ2K3s6GQ7WFnfJ3BBWZKRMTb 4ePxPArFHFpCmZa0xNW07esQ3ChFRYo19MgHxIRYimHcmuc13ohqyFQIZ9pAP79pFg3uyGSSqBC7 uk8LVtMHlWbdVL/pc0K3V+bzt1rANquISV5f4Bz9LwNzp4H0xMRHKQ1lwJhNNu0TMR0TLkXFK/td bXX9cWYNiopaEL682F8RgWq6vi9o2r6Ke8n1a8JC4CSX4cfQGguFTom3CRfT0Zvn4mUCb9IafGN4 ENQaCHLSbGJHNSqfEiCb2MM9lKhbU2ofgypv+3BiKalDBa5qH17VvdceRbWj/RIKjOudaHmZ7lWu VEiJ6ikGVvScFoOw8fF0pPisq4kyyN7ChWoxQjdWZDbVoAPJwNcfY1nJ4TtL8cjHn/2cKYek3iqd 7SlOZxVCwF/H5edbce2sSM00vLY1yWHQGC6rRQBlLZIJxeJ/ojzp4rC0EKKIGhpK/F9jm9/+Plfi 8LGVSBl/QFwjjbqQoX7n05O8rwcA9joIv/YQB8F913mljZZJbocVlahbziFd9E4RJI33oN3792O/ 65XAer7BOMraRKDqdmMO2rp5dD7aslqMRCBh10Ph2tCfwKX1dLFo0a3excTvnbI+ezapcQicp43q g7fvJ4u3GIfpr0Rd3gfEpxEN81tG5NnIL+51BRCqX1kRVHlk8RoVAe1GEUDzOE9Wz46ajHI1bBtZ sGLAvaJ0/dCsFqUafAhGM7DmXjvPNtOnafDI6iVco6NkCC+y6X5VrpOh3BPJb5gA4ZElMiQhZKEX ECAxKrMi5ar7MfFpw0t6y6TcVImU8q8gn+1sIX4CbFZnL6Z6MiB0sEQstCLdEB4S609s5szQZbY9 6/tqg1POoOxCkyP6zL8fMnMZUeqHgzDTXuhbbVLM2Bynep9FCvlq9d0Fg/GGU1nzikiQn+FCCt+Z qEBP21FbmMzeccypjiTMepK3YrsIuzNFH2IOQD6XfIh9M6/2lRQGuChp0RzrDceGLaljEd55xuQb GZheUvViSGhkOU7pazpHzMj4+QoeO+KPtcSJEWc77kuErDyjEOtnE9DtaQy4asvngNB3ihdb4xJy PZoshhwkhRAOeoKH3Gg0YS5zcC1DqIYS4rJoiizkSMX5ADMpGRe+Bwlcn42J6VYkCY28JdGfAdLt 4pXNEfvkqKQhKkJwjK0YVFYLSGN5KTyNp+jbeF5EKd8RXh1bgdAii2Amdc8ocdlwBnQaizqa2QBq r+65OAhx9O8+BGOrir9GDcAv54QBQGABWBvC06ChESpn0iEGflRQGOEvuAVA3h5CKq8aJXEcgDXy sMPIP3Pa1rP/m/ED58O+PslKkwp12lbV8jiA/BoELiSgGYtk4WhZME5T19PPaIDVOKarmgoTFzaq 9vQbdzij30UQdyN7AWzdSPArWaZZTQ23UyfnfJ7FHWp8L1Xc5hXUx5WQP2+9k3lMebnYfDFq1ba/ PkS9ugSR4sGmNdnaV2ypo8gtKEHJQbaXXdl3R/veNnbitQ1P7NUYgPn2ehd+UF+qURujXHaVqX0Q Cz5Guvq8rXn0bR1qNYdUvg9a7t/64TL+K44Ui4oiZPPxpwpk6KwXMIbOdDUcJdHFy6isbF/qQp3j CvqAmJdUVuGJkcFk2ZOlkdKe3Hs5Ni9vRHKhgHeDN2IK8NLKSk4bS426PfRjKrBeK58O0K/ThdV3 tS5JDrb/oBTW+Oml2bf2XxZu5+eL/afX2GoaiaozmzFu+6Rqn5d5vWm+0FuWpF0MT9rc4hbesEJl SKi403X6+/eD0AbO7BK50aTngyZsFN8bRBKsCWYqEqAF5mAjWSpEbQ1hVM1u6KxxnbRK1VvLcsiL f//l5980L5znDQWqeW0Pau126+CsCAbCQu/fD4K3ni024BJI4oNiJWVESN6u3ngkEZ6nmLpenM3z BKWqgnYTM8UAmwN8mcE51H03XVODpzozsuAXXSX52mkkB1BHWArsnSrA/jz9u9B9lWqBkXKHCECa ld/IoTYoJjVvUXZ7ZrF3FmVIZ1ZXLPAnxyTKlSElzaRRww/1m0QSw2jkFdI+9JlGoj5pY/opJDnf 3nyL03TNnl6JqgmV2kYQKEOZ1OL16imFKNqvYI/MtPUd1BrDTvFtl6DiiGfZWaME8VsIr7Rq4ekw 9kj1DUrkumxXN6OWQbLYBHYqN/1kE8X98cNsgHCf7a4F8MP4IFfmxT4Ibp+NmbyFHoZij1RTZ69B oJh9y3LAELDm6qtNomNjSZTl5VY1Pxs/sVH+h7VuX2fTRGLBjh8L7qZTlzebGD6K8I9T0YZVlYb4 7lxhtmDAqcrtzazypqqWcq/n7yAzhpxqJ4//oLiz5WAWfWAYuRTDkfCPWPjKMxOa8WXc84O0+euV vbFvMLkner+IygH2dYTHvubx/fTI9X02i/+g3HtgylcR/2i5EKmvk4NqpasaW8DuEM66qSssVBXb Q2HoQm510ojUC+tkbw1US1WbPBsgsRUnu6v5dc++OycmbwNsAuDYBcR9UvYCYt2FBzx5EosAfq8v xstkigKzRL3FB8SMGMHhofYgsUa5gE2vg5zRvwzD0Xn87s9tYiEwSOc5lbMsweseQnb0uH2c7yYd 01gXMME7VXxAzGrqE+qaW8yLJS7HEF5d3OWVvY57fpA1xuUye+a6zO6u9ujfDRPicZqWg7rhEbLj YhED5OvPvWn9vyw058ECuHLacazrwqEraD/X1Pd8nvf+9j2++ax/hdfFojAjXKET0ohv8vTPPD7e yCxScnw0xeh57/FRhRW/Ds2fHOzjZvikY4INIUZwpUAYHEr7qLsxlDJDrdQbB2gLSQ42ELYfi+zf PrfB6wxoHYJA5/mHHjCZD4gRbNpdeVDjh42WOLuLjM+CARFW2v1Qq4ylIrsm5nZrX4TirquL1Qzy ARde8c1JIoSN7jcYAJVBjYmeoeZgu/HNONcO8dVrCJxTu52w1ox+wDGBQ7E7rnygHO6h0tbTQfen jzPpTO2jZ21dohXJPtevsfRu1redNpjDebF2TIzlEha7CSrV7c0RJQvw6Qh9ym/ANxgRF8b3xpYZ 8Ym/3QTcHYf9d4Sn8sFXK5GVHaJF8+5OpfPZXbVgC8KLUVYZapua/h6hdvv788W/TIDKJCvHvaOg +YN2sUBGvHitYZF4eRlLmOVip86qI51ZBfD7AsWbgTPFswroqs1BZIAGovjt24mdGaugZk75Ij/8 Gq2brerKma/iKkLwvwx6LY4Y3D1jyl87MLB+vA6Si1xc69+8BMSDBKhksnMhiXr66Wj1ZQZvMmry MYyN6eaDYgXzCVTyHj8FNwmjxRZqV+jPiZNpU5Au6Nwi1uNnEaMpMv6XGXBq++r96M7nB8TH1DwE R153QnQ/S2i5LDEEWty8DEvO1HJRQFduiS0uyp3ULWmXm7sXdSUOaBCSXNSLn58FyYaPKqotxJZe JvDHmdjngWNmld3iLRQBL2Gj6XiMAYdkiwaMtFZvGGCcEEcmIHfXmy8gt9MjhGrVqpA6m38gwnsV 8n23EH/9yz/85b/51//D+o///d/+6d/853/5f/6P/+U//Zf/8s//+W8h/Df//L//n3/7JP5v/+Fv f/tPH//8T7+59LdH/Fv57/6SfvvXz//+u//6l395/k/+Lfn//Lv/9/l//sfnP/6vR/Rff2u//U+/ /W//If32T/bk/+oz90nH9xz2GuE37rBMLonB5wzpc5qfvEr8r/72jP0//yV+Pv/2f2OUlcRTlq5f 6yyoRZnM8DYwJGlADPGel8U5/AuNSOvyyUBd+J9vVld4jOm7n49NPfZgEtSCaR1EwC5WgYXiCiZ+ LESWFViQ8f37Qd4xuoHpyePmL/oBce2byNkIFo1t0MXMQF3oJRPWmjDAczQz3tsLiUA/4IGgd4jT HBiCGUaTdklxGG0Kj+OMMN+K0NQ30+UqbZLn2eWTBt/Dqk8rK6RXYxVJmiwprQFDtSfR+mungxFz cedXQc1LCEU1HxalCyc5MdkzyaSjUPmAkcSFAnRHTdo3L3De7PO4fLFaqTocA/Tpbf36wpL9NK/P UlafWKiTbBKu4D8grmKecHPpHeLWyF6tcpqkiuzNwjQbtvC29xbYp8iHtyK+sVcULZJUsPTzdV6n RgeJRjtL1smKEz7q+cAyvVqJY7NQM3n5J0lOgSp+HfdNK/Tcc0TjT6LXfv7BuZZUcQ== WDQurNjvJOSyN5wsyT58LvZsIh/LqlriISqSoRX6Mq8z4YJfi9g25/u4YbwMWirchNL7LNqxJzej +fRHfAMtXooAN/vGnmqsgEjjy++/SfU8egnYPL/oqHpYwl0CEPgOcWkkzfBkxLsUFektcDebcGYS dwTm4ZtfO3V4B1zl3hQL8Wbmcj7HkYV4XfyapLU24eBO6ZnVqFaIV3jCHCLNQjw4887hUjnE4aJk Ev51YmfGX36QM2a1SQrjmT/4aPJ8bWQIVeo/5p4/vYjOWGe/kb5ZyeEVdpOJGEvXsrItT3K5eHn6 +/eDUOW0i21ybVXZGcETy9i7NI71BlLPg1mP+MsYZ/DH+OUiWjjoA+Ip7k52Z01drSbNwoyYnw2w 2JbELYn4ut0sTxZ3R4Q5WZvSU4dO2al4WAIM2KPl9G4KeIONmdmXi/2JXl+AH6XzH7hnPiBeTVwf CIGkfhX5sxnQz1N7lpVLia14sgLmPmm6XybAmVkhwaG+JMjTxE0akmrWALqymJGVSmYfkRyiDFV0 VqJEfVxm0hL6lS/l+TDu4BAD3svrxM6MR6c+dcvu489/8LmqOQwwmsl6olXScSF+bkIVvI4xg8rB HyVNBqlvbNAiOq8z6Jd5nQkfZe9RAE6YnDinvZ+9dTo30/xxKfgsGWXICxKjYmqe8/l2BlfRLJoL 5QOJT0VAR+PiiUiVabiI35vtCMR3Mh+Siv6khbwGekN9EO5lz+5NYqAxTxn3PYE/tGY1M2/smldq szZxDpEXw8TY3flUeBuMkb9HJJs9mQZ2iftdb9//3Pv5druRo2is8+1ensfTbZOHdjN/+DrIu9RC 2bTUPCRBtUCH0HkvcP7VaU7f2k46OYFO41DXFfJY+tF3KZHDZUvV5LUlnGeA3Nmeao7KGSQdUre+ v32BN6ly9MCwHWdkQVTlHd/EOyBDafZSv54wQxfxQh5KviRnpIT6uLQul9cWDLr8ZQKc2bx7ESkb ZuJUOfKKjEean3w/rLqxnhOTsESpYeLJ9ln3s5PU33PDeHSKif3y2V4mdnZJ7qTJdtoOruXe9PCY MH+EYF3Z4KeFUO/mOGEu5i60r73+G59ZnMdsAfnzPkFVlv/Y4o5IbI4G7qzXF+C3sF6L5Ta7PigO ipd9gkBpXG0oEblNI5oxhkykcSbeJ9wTMSAbdJBBjFne1wmc/dvXafdUzpofQ5qkayacspmBhDPh ONSOVUs+Mo+xI7QoTKwk3oPCLxP4uzMbkx0hQLRnhlOlH8Zw8M+b4flfHiLuf5uZCNpBO/InR7M3 3uxk6WiX5zpS6X/+asvK3ZhfUOQtLbLIWkonV54sdAuxuqA2eV5ZQYS8OE8W0DQeK+t4tA3R1AFt /idHe5P1gvCtT0L2gE9qQWs3pzgIEthkw8qGRje4Z4KntjPHZI1DCdI0/jkprUqwMmHMgOddLIjJ Ek8DF+FJstuzm8VWJAgxOh/KRM9h6c+OGgm/qd6+/wLvFEdmYR/gxCPslWk9Fge8ftmjjZM2iKMf qQF2oW+6SHZnD2/yfU2khOzjipiPXEj2dTuFp3DBvpk2eQMQ3oRd5GL0537U0UmBp1XIHfD6Fu9S cKVymCUrZpD/yawH4KUfISiJdxaIxPWTWDUzm/g84tTI7EnMaLJG6oU+W9etvfMxPYjCTlZNubAh 2/ERnn/gjgYhr71BYUOJtUjplhymxA+UtpyMzme95PhPjRTwZd03+TCQo3QIiGh+VvKJ4XQQ6LlM fTFBLmbrstVAc++hv8+K6yl08Vk8QDvoQurBAW7qL0L2yzTxYAxonInlnmWA68XyUn9vVf+7WB7H 6Pot3ohjTL2sfmiQYMnFyj7QGhrXIZkrc3PdmzOfzdVak9IvWtlBF4StOn6eweMxcbJtnjc4wTxt rp+W8Dx7L3ev33yYb7/td+rDyPv5DjJtvNJSR7esb1ZGOSsPz7As0wH09Ep4q1uRiAJCeVCGQkQX kvnWZ0B3CVRb9iyPvmG8Krlgl2JPXyZwZuaRlLgO1SrIxLhkTrGERcs2mTZoSZl3d6qS2YAwFUWN Pv09E1nluJg/vlrPneW73HiFrQedg+ZE6xJeQL2zbNTKkmAnQZC/V3RPUtHUy7+cDFgwDpmjrwe9 PebaDaK/+OcAXnrMUjHEL8t6W2EdcTN/XXpuAP5uAE8Z8Vor8zXsApcYHe9LgB0o7sEgZjPhdd3k fhd1/HqdxeXkLManHUH96uQkwV7NvpB2ujiyXgZ5l5021FJ3MH/j4iAKsEs3M51vNkXjre3RhPfv ByGu3sBlcXh7lDsFTl00BLtHNuAd4meZIWZDGRMiH/AIO/D2L+MSGJ8V0O1R9vdBMTKwPfDa7xDT hugR/IYQt2QXCuB13EPOslsXtTjyeMYYXpSoLDgrZdFDsTgj+nkYuyLVWzZU5hv+/rnT+b0Wg9g+ 7Ndm0Y8wqflTB2H467xYeWw1bBNmYWmELTQnuqD9x56YOfgSwoRETbMJJw1zlaeaNBFHRg7s5v3J CQtDgZiTiXL37354ZfesgOWnNkhcytD1KQB6fYHzZsyI9oAR8c2YGzH8FfnnjSkV9klTjasxpa4G oJITI3077qnC2JM7ZSsjZWWXawAp1K6iD/L1mTQgUImtD/dQS/LXUUnLNkhz+CnaYW2EamIJBbAl 2ZgnpyI86k/1WKh8MqmL0rg7COIOyOplchmQrzN40zk/9L8nl9PL5TgTxt+LXOQswjcTJkYks1py 2bjiGmcjERNWEeTnJeHnGXDV5pVk7KmTaM2xrnL00THNCD0VEkDFrbXP2knKjXXPWZRKO0lNGPGd AhOeC/yTZbdni3Jamz82ZDAWRGZfX4E4n85aXtOjeRKC1Nmh0fVoeEEmnMRBus8OIciYe+B93jgA QimdAQiTDT4Kv/f19y9AUOSQPKZKijjnDWPDAncEQjj6CfhmCnsln7xXoRERxEN7HPUN1joIt3BG n2eAaHT2UheGbZjDy4ZqoJ1L8E/OFzLEPejv/v7t21Hf9WuPvoZ54iRm/DlG5qwmIvZ1/tSgARGa rKaybkAQJGbisWF2FcSQTdgG068TB/llBlwIgORCj6p2z8STjAus/8tbHCb1bMuTiYbwjQNUDYDo U/Ar8tlZRbr4eQZvWrVjyDvEXx+p6hygQjwbvTZxQh0BHRMq++/5cK7a7E3PLj57jhwL4l9ncKY2 kqjWExNA2YvbaBgV7Z/n9lPXj82Rn29EFSHa1eytOgiYmWvrWUHSsGgvE+DMii7LdKHxsyMdv+Dl bLtOQfO6ttoPi7aKyBFhJJnwQuFpA/9wNCbD2A0sPjarRm+RvIOvb/CHUKCMz7WYAlGgoA41cSsE cT7nCVc433d6rdaAkH21HNo5IO1w9mZWLK3dKNIvEyDBTBFOvkcjhQ+JU6c4k6ypjAHQOQkJq2pm TFh5vv3ZyWcreMVs1Hi1zurvWgTy6Bdi+nVeh90KrbPN5J1EpVTzAzOWYle1jqDH+Bg+qe8//8G2 xMgyCMN5/TmniP4XNf02a7rQ2LYjHYbDUJCzicHvEY6cYYOjq/VjuuRQQSPAImE2eJtoWGwLivt5 djYa+wT/dPXxZCEAC4XzzljpXlGrbOTUDbDuAv7bLoogN+v21gBgJPK50ujsByAzRK5olb+bvsWE bjRKD812qGrOrciF+QI95BajrmGW3ZmQK7D2oUpBs3Y3AlSui1jjOPUFFtsuWNhTmWM1vHnDtGV3 zyFEuRmsrLCwYzSwAZ3YhyX5sySg4LUsXnzPt2J8xIQIVHe1JjJh3lirQ5AxzNCc+F4FgbLhRf/Y vioQOIxr/XeR5dm0Os8ridrt7xv3rpeu48k5MYHnXTlAVXVNjx7FJEDoZxuwPtqKKDqXZoM2w3gT KPTcoSgQcBC6Oh0OA91U7DnH4oSwtsxRG29jE+fGnQyzz6p7EIbtIrAaTSHMHmBzzgAcyv4h9QoT WTlbLzEzMPTVb84JrzCiwkBp7DhQjnZIPk4X5XYFUY1VZYcX2Q5LSLNMMA9uTuJUAWi0R4FVDGDa i8rwsUJIm8FEZvfucr9Aj0G94TAO/j14TjaIId8hPkEIJyelmIm2FnWWpO5A9wargWFRSTc3CluU EQ8n+aClfn0IE7PmyPFkpBpJSOEdVWkVKF27iZxKU/2z7JCI5GeSP9JjKWB8GTKfrzM9BYYfTiul v4fZ0OU+jpOl6vKkHiFa9/llQC6usWRHduGInFhlcY9DW1vV1Gj4ZlsdVoyzBsGZIZN1oIenr0sF fnNYDzuWTZ0uUWMTFWZfMsceN3qcaOdua0jejq30Y79SKMawA7D6CEKLGCD1wW0DrNlMl2sl5iEr 0Af2pgejDSvx6+iqSCPBz7kx2Sp8JkUU+9VtyOuWWWUmULpX4iMS2wVAmZkUFmb35CxjKPPwe/T+ DwyAhrsWUoGnMm/VzITPLEow9wBusvQ67cQB4Ag6lUDis5WGFwNezSvzabgRVNCCi50vQJvBCQp+ MNzwAr1qcyz+PhONLTbfL9AeTMTFwAyJF4iqzl3lSczCvopuj6LevyjyCnXAARinNdKofVgLSub+ KqwWLapMaQLwzeP19kjYxrhVnmXTyZ/etQOjgm9vVpKwuoXYD5sCmGK8Ki8uTRdSAXIfWnf6SuNw MctgvAAcFAXV0/Q3yzhRdeHMBLgA6mnvMWFSriD1DeDB9IPS+V0CaDG7IkPt8DnZo13Fmigjtd8/ mhcNvuz3N6d/evVODw+TrRDOoHEzlCUFhZ1tDawTPrbz2scA1hh70CcJk9nIIeBMNoU9pqlzUn2e JMv0Wks4yntj/a2Z2iLDSUT4rGZ8kfVEhsy8a1AP48w01MFiXBMIW6vrnkM1pJM1z4zO9Ytoay6B w/qhp1gC/DVBA6c1tZl0qjJvmWmk23yWrVDnlvPTIuUXwtZ4uA+Zq4mR/W6Re47iNVOR/AwbHP1W GLe4Y6gfnAMvS+e0U263YY21qIckGQLT152UIE44lb94daspfIBoWAzbLgdsiMnT2lkk3otgdfZe Fh0jeAHir+9DayGunS4gXdbVr0uJoKPVlRjrV7tlE09OgL38bNSssDdu+2U/wJ3smUcOwBIsWBHv EK88OUQhs8F6LuTW6VeCrnX5KeKSAbGwho4+2tO+YYA6NgZAa2Rv8lRvw8uExvhc+M07Se6snVKp +mahUbwBNZ9tqEq1bk4yoC+SiWl1q9R9Uz+WqnYdYho2A9m0a6Qzg2NsC17qxaTcHyxz2N55+DaA TZhly7Wgt4xQaJZ50lhZFmJ6aE1ra0nUxput900hE692crhxvVPo1t2++Pe5cl5VQrp9LaI1J0TL e4W9dkneGtclou3esYO/VIVE9Bo/XheMmtnvCjZF1jfTpp09O6cuEbcUFhIMrlnfIfZw2wqkTlZ9 Zya6eSHsZr/b2Gi2iHDGfjmzesiffae4ETw2ENbxWhfFr8Ex93NQm/smKwvkOWeivw== eA9bxjkxSn1a3FvmcLLEpoEk0zuWsQElS8S8ZRBxRYda3I565ZsRtrv6tTREjptwCuO991EKRYH9 nROfLYonemU2lZ36T+raW75Zb5Q51WVBGSF6kuDZwg5OjJOHYmVWSeh1K1ReTJg6NUHo9rwIJZiN FDMFkF/LF/Dec4IXcaQ1PVsbV4Yl9H6PTHyEJNSFk091jMsKo7mjm3isN1pk+aUluO+i/rFnM7s5 P+tFUhEQQ+2sln12Hc91nxFe3YeUnCQ3ds0ngt4Z+bSO8kzErCqL7uScc9Tmh+1grOnXGYNJ0tif y3UPbZLUBOYAwmM2eRZZwVCz1Br7Fbuj/QdsyjmYBWzk7LJALgtuF322Zjwh3C+69GaTrZQClEMu sKHm194ShOLeCPQm7tqESULgNkPITVfzsaHrFlEe6c+c4VLovUa6qudyWtzfDJkbZdZh5kMy3Hm0 5r1DQ9jU7dxb+nIAqkADv/bLuyjq0sqqdedN0MNJ06VRck23XA3HxyiHSOucHcTZPOJOGCUDleZ2 ZdYbXz6HUV2wZjkf8olB3U6Ff8X281U8444j//6iTzK1xcX1Lsnv8NVBJcvquV/BZgL42yloMVKa 1DUHQtpMXBZ3KdrxDXPGmW8kmnx0EvpsJLIVTyrqHiC33OJJdetpkrC2xLC6n4gQkp+kRiSQw4Ka zmHUoRedp5h3A1svj6OZcxjNDLQx6JsjEiQuIFCAWXlcYhz05FeBYrRAcCUW9hDoWD28NGDvJzzM siR0lgleVhYEpXHxg1eWmRH5btHtzIPOYgzn8aYC83bljJkf4FkieX5fVpHMS75l0pEetcb8cp/R Aj7Uz2pNSYbnWtWWCRXYzVqkqppKEazKU3Pq/SxzIBwEg7B9XnYD4WyWuRhVWW9aaibWV3Q21Hek VJbMiYNEMzHukYPe6+ZQb2EQIrzcq3J7Rp7C1kPdWCz4eTpp0ovC/Fl585/BHOAkvle8XLC3CvCx CYE7z9GtgwN4KmsF0AnAj6y63izIdzf6bWmkRshFT4KHZ9F29qT85GHn7nbvsw7E2Tk4QFNzTOI7 2r4KoQhSeYSnxEUYyGY9grfSprGX22aLatPhcM4f4anadReWAzDqcg5T8x7uwJXtwBi2Fa2PY61k DNjfC3TCgHPz9neE4wLk25wRTUDCawDwfe5TaNTm3RcGEZpmPdhJEHVSa21etYeOO2K3ibR4mggJ bsNoAQlKwyXSjktZfj+NnMdVLeFQ6Ri2C54vPg0TEqspus+mcl9TElsf7BF3gkY9yMz+E7zMLRDY MAI6SW1QOobwmPGAJYW4IN9kOWz1XalizcgqhLFmGWvq2ca2FgwTGUkH08bWCGWrWBO8Zq1E/Uss LTyydkNxPCgXAxRFb7J42Fq+HKqO4E9TPwq/8JhhbJlsn/5jVV3J5V+ok0sWr1m5UnkG7xu061gh Ts/AAym/HC1IuE6OpAdBhEelshFDOznP01K33oQLZbfTCnvLnGp40SSw6mme25JAkCk80z8wAW+E F6cDRqn9VlPJL3P5Wxk0QM04Ad+8OHWdLYsOWIJkb/VkgjOrwEPcREbAdmZbebW4l395ZxqmPNKV b6xLUeFTaFvFS+j+METEp+YLK2JisaOgXqJOFSwXce1ZC50odt/oFx9/Py6TbaGFS23Klx6dZz3v AKPJgY6LAapCtYaL6mxbRehbvhtclUZ7/FMvK2Isiq8VYQyjbVnDk53wzv3LKtFaFGVE7zfCIxi3 y+IbMyhFITkQKXtrVr1DuWzkek6LXfaEV9ghlHppDC7VExu6XtjuObZJZmagJgGjc5QSx6/dF+Vj vVU+u3nTokS0ikL+U9F4TRddEIu4yyZJrb0CjI2yddWnqyqqWI/dwU/WIsVdloyNpNcq6/KVmtzm si5QIBX/I+ybDiq3oiGwj4e+rwG66pcWsM82amU1SwM7rQ0gAO5hii6nTs6u2kysdt2ql8T9+wr2 5gDllCoO9X1dOs1o1f3L4d5LfcN3SmyPeUiYvCdfjDsvlocF8h8bYJAGiU10vgOR41l4UKeqvZyI wCHc8f6a0lyCoZh4UEktWI0mVFk82fZNmEWionCRP8sV28hIlXlxtXG9pxonh4x/fnxx99tD2OSn EKxuvUiL/r7wOJdx4ZLdEf6FVq+kMdno42ldehOBgaeKszShzFJQdMcATJqfzjrWFLie2AUVXWmC 4ybRb5ZDZZYF9iiG0ucR9/RXDFD1ujdrTfEWk9y1cIRLEQAiqc1gMTgpi7i8/vkNA+RMaipHdsS4 WUsOkkoTJpb5GJlLDhcq72vTnUB+3mH8HD6WELIWIKma1lpxZ1bvX5BZC2+R6+fRvThOeYXbEV8C 0J9s3KJdOzwTU/8tEHzoU2YW5OaTzEinafxjiw4CKYfconxMVFRaxrzaRXnkUSaK0QDWbYE46NkC 8Ko2QTFtbldFfx1MPOebGsVZJ0N4GIiYFcp2FaqqspDMNZersNqDU+8YF92A96kitWcbDT/mg/Nh eEKohOPWzTvWywPfIS5yydkdNxd2VXYLHtUJ3jeUN3qjrsjlMpXVdT6Lh+l8tKzcbwpa0vh7I8xj 0es6z7ZO1hnaaT4o9aIbhRyArcuT8EsulM81JDtl9zLpMtqafLIfXcidT5frO9Qyn+16NulZfXJg /P0FROlRWASaPfrFjbAEY16sM2Ml0s/Y5lNS3Zuefc6VwPWD4HpmMlOwsMcAn8jcBmot0kWlVVF1 n5M2fQ7MHgcYKuRlOiap1dU+nW4e4XOH3AyTPoA9KzvJYX8hLI010kQNJqMwVtZjiHHPggR0vIkE TPsyYtm8LxvUm3aau9UcYE+609m8uPe/8IVpgCGQn52fhJZe7/xgSU3d7T/+wJ8vIIzMgIQ6SQLt FNAkuqzQikdLdyxs4UEcW0o1X8vFAvhrHx8v0IDgUF2FnLJ4VmUPQq2XixyTcIGsriDOqFrPniOt U1SZcV4zsSBNys9ioJt9I9F1yYYtHPboglOMaJ42lttAOQMxWpLv5UaC/V0PVs60dxOjORwk094i VGCjLdPenXHb4+Dbbw3GeNGzJ8QMlBTd2rmpRuRwbZimn6pllt+UqxzqIhffVHoSl+jaHICVkPn/ Y+9dlyM5jjTRJ+h36D8y06wtoIx7xPAX2RrNmXOgi4ma2Vk7dowGokERS6DBQaNFcZ7+hF8+jyhU gV1FkUAVWLtGTbd3VmRmZISHXz7/fDr26cHsxOPn1TcTmkn6ilkQtI5wqFac6+xYSQakpi8uKS0+ G5FJATmXS+gvwD4LzFoqTnOYMZRcUu2Vnh7WtZllyP4vC5AGdI4nfBsQ9btsQR1qaaHVJYPFIEgi GAPAlYm2bcoEaeVWuCJ0AyFKR6z8vlixfhBwog5q6Xhw49GjakCAHiDY70fzYBjQXHyWwFQP3V8m UIWWUOq1HjzvqH50ZaoHUjwAVakFdFpNaIZBllTOOoEAkpPVVVN+MIEbCn9EjLhxALcqCxtygpp9 dIPu0oOeTczJJUHFgRfLL4ZHCFCQnoteACox5IEnS9owecpV5Nls1w+wwK1w5p5GKVrHALkButRU n3tS7RgAtV4kNExzNePMO4GS1RkW7Z3V6EcrRqArF2DKzFTg3y+oc9FUXLfI+1wCKVIyrPclAJgz wCqerC0ggYJuY6+sOvJhFRpKt7LW5c25Yf6DzsQLFE2EYJZ1w+P0toid9D6HX4KUhAehvqcWT0mn G3FRP6gPFLeMB0ARUhpeWDAuHwIrqncb0B6c8ep5PACKQKPZiz4aYDUZgMUT8A54sH5QY4Bo8AJC lKHrqR8aPRrHPrmH6hNE67lDzmEyJL4ZMSTW2H80aKCPYurWGbBIowYkCA0X49O0k2GHdk92KEOb rmx54jT29+SeEgcCksokTigIAurVJyvyTmYAkDC5te4O/W7s2csX8+Aa8JT1AvAKoDSfzQRIluP0 2TgVkzBLYNyWUYKCthU06qj0COblA6FAGK/sbYBkewRRP58m2g40FvYE1oXjzVsMM1YaNsNibZl8 mhKdxSB0PltwiVwWxD/A1RLNxKRIRfJ5WmAPwzLRcqIUlnEJe1drgaeoirakmyJWECu0nIQLwOIA M/g2wbKrNbChAN0CYJ+LFrFq0+ZBL2Xf0K+MxnU2LkiXk5S1IhpYB8hT9WpYJkSpU9ASXelRZzrg 2hSPDEA1L83rhwhaESnjFrEy6doFGOJFmx4H6+xJZ6uZYxQnNXuu6oyFxVJJUSjY9Urpl8bIaAuU jgBuRMIhcJIX2k7DynQGoKlPq8ghhxneDtaEwG2xcAo1yMCrmOZ4uzPzP5npSyHsCsgkaosfq1N0 hsuLFgqkARoS7lBqFNcuoJf2acTrvRUSOQevhsS6S+kc9AjjO7vXopAQEiaYQg0AGvp9RmVoN3fl u0TjAYuG9Qt8dtiViI6FZDhdbbd3puJ+lEdYYwuGqNWsKa+rKBNcQ282sCMkXrBHUTgVskWbxokT kjlGUbpoWYbEw/RCtU3IVp6djNU4EOq8mpawN8sG8qB9J4d5mE1XjUaQLMHGMb8qZKs1jJZup2xO g4URNEUZii3DNME5QhG2Dd2KGRkmbhouSw5TWE0rx6nvXxe3bNVcDoHLQK2HcDKgIIyE0RSHQzoO GLEo2KgL/f3gAwHAix7BMNCoQqI38NhfxXw7EjvTG5r7qkbwEZTHiOYqobPWqNvoVxbFsgZzwEKz pDaRL0rYgrKB3hDcZnXExc6aKDbWmYoB5khS/g9xU+KHKGWrIEVZRhFQRfIW8ATa4tFIWAxh3zWI 1/yns2hEHPACJ2av3KuB2cUFVDSEFkb2mJFtcqkiWadMczSmPxIm4M3ZmcAAoY3GXJoBplGL6gh4 do/Q2AzcRxAIkQrNQQe9Ik8sPENWMZaCVkd6tOyMixkSBNiCDNrIS2Qbvwd6xxvhLwmNbB/puEd5 dIq2t/VWq0JCpYzz0lINdwKRFQfgMIPR4kzWTJfnFTgKHHQ0r3XReV00BriJnkfE4AUP4D6KftJ7 vmR8rAd0PQAm9EVk2ghRZ4YxmOWm1li0PptcziBBrRgMIJwkhwHEBCCnaQAewqmZxFqPEYPU1clj VZxfMVgjOCuojlx6pCqaGxiJcJzUI+gduYYCx4+3AUbJASwbutIKwgedZzQ+fC4WlTpWEi6oDeNN r0L1xOfC/ZiMTyJJdBnAGZQMJEN/E5rGmcOj0YyYJmqsJUGhEXZnQTmFQZ2yEYUl6wEdS9+pqJ0e NXpdrG3auYQ0A/wD3Ea2yo1+pRalMuQJv0bpYzIjjLBHVvwSE8BPo/pmnLOEcyqo2jA0T7VvkCVy JEIEGJgCMdoAoMtNwgF3puJxTGkAkPFbVuuj3QQZFWamsJ1+sU1FvFGdwC4czAhRe451IWrhktQ4 8gBpmdYRSuQIrVarluUzAESEmII8Gfk8bgWR1SJeUVrMN8ySeBchEjKJaXHx+xaX2Q== hTvT56qm0PHBEqNo9HNnhb8mZ4yOdAAGey8EXJP1CEyLuGiyNhc8KsBqcUpqJ2fsDnr+gyIOZ0c0 RA/fC6UzVc3m5GSrqQ2VbVhgk6MpzsSQZigd5ftd56jDANm48sJi1HUUULVN44pJwxJt1yqmdOYd 0fJH+rkZEaMh7jqvHoYdoZagCQW+FjXmiGWnYIylGhaQcQPp4fZgwoI5+NnO9aQFezzAcLRSND2Z LKVBwgVMaciXE6Q1GBMD+mKRGL0xifchABU7sEV5PFi2FE6y854pSQSeMPC3saH1IwjAU7a8QZbY 7gljb0Gomac6gfX7GFI3F2gODVZ1YfFgCkCR/Dp7CtHSLEqtsqCrCSs7MCFy4ytMjwZQYhPmYdXV hmAF6jhJAb1tX+MRw+FE27+g6LMpUfTaA4CnbzFtFYX+8kbFIyjrI7gCh+lnBISLYTKiFNvD8gk6 bcNWp0EbHgw+4/oDgEIpTGgRKtq+eZAbUZZ1CIFFQuNQFlpjhgVwF0cRRaB+QbhLefiARCOH8DY9 AD2YUuW4YCQpipTC03mPcSxoz33UrSykYXB08tBHtpyW4etBQM1CpKehjd2gVVXiPQyAwKazvAfz RQJhg8l58PzTYuVu8ICNclT2RsUIWUpLEavbicgKAcZdglWJDxrs9WHpnv/j32HSWgSdAV6gi0QR 04g1sxAuPrs7Jz/kggBYEweamoRwrFAOs/4EE7GkHZGDkZbFoODjxJcKE8wkVLhtJP9J887VREYa gNdkdMWbGCg3PpVySlEqwEENOWuH7SnLC1YNRaQR5BtxBiyrx1MRSzQzXB1yz4lIMGKoR7x+f+xn wuMDFeesW49bJpgC5/gtlV6BBELVOAkN1gIKfLcGCUYy3BkALWjJpRtacMHpu/5co4kGLP8glCFG oe8Q/UMvu0xoJSTLijXW6A4ZCFNHLzviKvDIoVlFLFHdx6KpFqDoiINf67uDpUrWnwsP3ARmXgVU al0Am3kP3FXotcgQafMS7RGhzyguVBJsFRfDtTaDZqD6DPCLgRFd/a2VMVrHkWZBXSddqzY+/Hir gSLhUky8Fc52Z4UahPeIVi2DNiDVIAXaf1gerZIyNnx/xGtx/bdcq7Xk608wWP6CAT3RPoYwUgkc f+CyJWFDxSIjK1QYgGFjKiRgpDTuw73HJEZD6t6KaMD58PD+Y8bA9BrmpmjEi5M0xpCDEfM3sycp HuJN+mCMQaKZ8gLicevdTSATg0hwBtKwJ+o4cSoQwCLnQJ5eigFSRq6yWLaBQEjGqY6YNj8DCDcV gr/+XIMk8sHA0Dtd7VqBHtA+qAOgSyv0S/EgNdeGR7gWKVegTmlQq5mFP7fpzUwjOmTDOVyAJ0Md apAqZGhElA6HKZ+zPgg+VDIzXynmwVAMajIvZetnECtVird8JmEr1FmZEDYUNUdiarFiJrpdQxVO U0/UUY8KTBIHfzc+GOYjGoxOEyg3KkbNTbC+fSRsSKVxjwURwokJw+tz0ZJbig8423y3MXFIpmvY 8gbiBuYagNjd6HMUzdV2c7aAjQ7M0EhNGB/xoAeOxiq69gDgN6dSVARE+fy7UXGoyCWHZpk+wnAa tqcgrLw+CCyH2lcGKLLY25PROcKunqFBsevkAoKOj9KbaZCX1QlgbnxYzMMiA7iAm3mF4BGa3iHz sGTkaejBvCXGnIQmmb/dmetj6P8Hr/DG3u3ByHg3mGaLN5R8M+MQaUiaAzM5B1CLIfnwpJuGcklY LcyBXOqGNxNy5jjBMRmzd6Pi6KzbOqUYQZsx+npUY7lbH+TMRi8ORx8HDjF6aaN7GnqW4vQNBido caoM7vY1zzwjJmAPwDRbvxMczGoIjiynzg3EGhzJUiliETktzcmSTxIhvLMsPBcn7Ppy7liEZYr0 Pbgduh8EaX3N/8B8Qeh+ALslMyYNzQ+Q1E+S6znbPAYGLxZpyRLkvlEx6o+ygSxTtohCRkaZqoeN ipSrl948/vtiQNdBb7f+AD9Jr/r4o3vVRyNay3PH2SBF/kN89kCsJ8LZg0EeEdsg653smaUmA6HD MPqbscijFR/STjM+N2CkpltE9ElWccCRAaUFAFGdIWXrNx/9TVzGKcLRYfQ3AXtOMk5vaiY1cnWK u12KEMiIzjGOW+pEtjQkV2H5FuMAiNaQporxIIfTaA3UplCf01axbKgN1ilF2/uJ1Ii3A6xWRvvI G2dEK6m+wMApRq5OhgPSo+gRRyEJS9kmV0ZAA7XbcfB2B2u7FIcjSPYPWOi6rVzHAKnYB06IyYwE bVwsUAOTkBKu0cyHJSAGgcgoCcckaJLdRYHJywMsbuCMgzcWOmMXdEONqqOs5oDHiYLiHpel00WV LFwaENeBuUEUkmyPiHSbRbLINsODjRfL4szo6aWmdZX8Rp3Tda4vDo/FsVglw/ALR38OEoaHNHRu LC5BNOD3QYl3aMk6/B51jeNMpiqkNmi/6kB4wgWMxmVDcNKGeImBJgkGbfyKFRluEjv7BA4cLN4J kW+V7KThLrnxrL5tQAglLgi7cz4AyM+UQfHI1JQYl9s61jldREGUgJUE4j/v5XipDzBwRMQDuAbz UJmhZ/ywBunyU98JFA97cvwswQo2P++FInTcTYYNBpfWSTtRnObIDCUgOlFulKb2ilTVZqErs4S8 xKTrnKkgSGgcXzKNurpkH8JpoMAzQAf2VVpQWhgrWOhG3pOrEAGXaN4Ad8XwTFPBI0q54oQgIGMu GDTYKl85+i0y9WnJHE2GM23AoTCKbwGQRcm0qZrVyA+nAdDCJE7EJF3Mjyhbp1qVbHOgE3SoeKQo BSKKIyDsud4cH0wPERJGbN2qfLy+TfB4ppbBAJxwkAGyQfvQFHwCV88hUYPikHQx3ltVEwQNDAPp iofqJjumxVgQwiJLXUZtFbC+oSdZJZ5oTTR8qdGDmjCEzSBCQCiRU26njfbkIVygz8jKa+aVEIDO Q/ktAADTALiVEoEFZ5D3eKqsmiQbutuA1QQ1bAMUICqGUXm2X7z1FOB88XgmGcALg69uDQMLBo/9 wvjj/63XMsWmnjQ6LgUvoy3YqrJkPb+cFe11Mah81HnRa5VdYZw+YT5BGdyDAZoRbQICEaKUyukS 0Lp4xs8juQmjnsCCA1ehpPwE/2v+4RQSmxPwaN74GQOhNBo2jBNgRkhWfzSywYw1XDm/MED2IHjk qjlAEJn3U8wALXKgmzVg2tBlMXDHH1gs1sA2JKlIXTnvGYJouQw1jwisWID1G+xkBEFMMDRBHx3y RAvqlLYjFENsKibPMITB2K61xUYo0j5Vp0ZpOop1JYsSHQPU7gE45UzFDFMQMWCMxWxl7YQhwmbn DHMkYdxWDGMDdCYBRIpl2o3/gouY9Vz1mNs6cegDNUPQvoipSfrBqgXqkxAk4PejlcKimBdCJtrR 7jQdHarxrCiMUwYgml1vkQCpBCahQ+7YGo80CUypEJFghhxiuhZrpUq0IgXw5SUaA4l3YZpEEaJY hZK+CMqHNpVK2KehMh6j4B9kJ1HZ6JJ4TBiAw/YyiSAm6Xo+ICCTtcItjhLQmTmXaFysQwPIo0io 5YvJ8LxE4lJh8rAdjwFiNJSOmrmMAoQ5hzpgwsVFzDeDFQzcqICcTJF1oCsRUyASzmYt9oL13wrG caTl0vJgWuBFwDg7K2BSRy9V0TLAwHp5CQLWGVlA1y7gbYc1SEKHnTCYRglulzEAWleQMFmLCSTe KSSPM2TUMpM4AORi8KVgRjVhrQTcQRg8LWLVvhMA3DEhmDyY1m/Emd8cfXpp1IYdwugKA/x567ai 0HDibjJlzX6LCIfJM+hlSWwFEVqQFpVDnD8tWD4JLWdYNSPCJqkdmNUipzEZSXkaGNUkTXvrlLEl mcEyinVxiNlcRsMbBkwfilJjkpC6/NbMpTg6nSar5Y50zjR9ehAUk9AYsIvpTXom07H28Jn6q2MA NcWJpivBkp5Qr9laJibz+mkAY50HZXjUvjn6rGHQf2WHj2JrkIqFMlYA1EOeuroM3h8CFnoo5FJB sEPi0DT8hhZIBFiMZZ4FES5uYAMxtUVqZsY+EiHosLL5GESX1qCP+30HjjGagRvTRJcGAoQ0iOiK fNTVz1AmLT3AALHIPOuu17mhA9SWNqjGivUKo7ctdQzQGloZLcKCyQDJsTgl202ccx7tOUaTplin 0D04g2ObIo3wtAjzaDuujLhrm3xIpK8JyqRsDVlIc04E9JSB0mUdCcggSseT+FwiXMycA0piMYLS NFHS0+8NuAqsNaGebOOBTZWQkA0rplp/jjTI67Xpz4mSFIZZd4uwJbwBlwEbaLEBHAg6eBI6NE6q QdYsoxNxZTPIQiJyJDtWI4CMCDlmYxMh7kXvcKZZ8/nkDTyUZngjMwipOnZAbTKWWu/k7Pej0Rb8 BAYnQgi6B8IgViBVmMUOA+Rmi8tN8EjmctGDCnhDHwJWrBLoUitiC/5UY5tJg7A8WW6SGDDNtkGu NlEFdNLZGoRfBEOsMa8+QDJESzaWlZTMXZ8PyjT6WyShuhVhMRsGMF0CF2bTnSOQT6ramkQ5OefS ShNPTRbzE8A+ZSDNeAJni14CETTqAuQqnPDEWFFsL2OSp6ddsGYR9CBwYzSFqHqHXsHA1kxfYPjI arDTqE9LuWBAgl2RdqHUGk4jGXkigSDxEmzbJQyQowGmNBBB2RCrV+VMqGVDtHIxTz3AE1FbOuQn teyO8iEVITEwfJDQzGk+OjFuNEdj4o7NzZqxJg/y2FKRxRseEPWXG/a0tVtgqtm1nVenyB6A9F3o A8ygbD7++rUgyx2rmePJIgwN6tMaZVfjOUkTKC7VyfLEwUDPYDWRRUNddCsLOCooDs+LyeGGZPoE dl6heJmfwDZkHL+P1joKlitxAC+ws2H6duGEsjMHhLr0OQQUihZakDBEO9oWcBO7GmD4JDtt2uQb WmatSfvNashgEQYPFPe0GJvVAidjWOPmgQgHNzUESGjWAStQG8AZ8r6Mp23WLFjJeeixPJT1iMt1 8ejtgO/VzCDX8gcRlsVsv2AgbHIOnZ3DFQ+Q7RTms1HvFGCQm+mdRriOld7orG1mHusZE48z1x62 mp0/TeEIG/AyHHDJClNEFWgmoh8/u3YiRGQwS6iHB6BmiwUoBvjteZmCASD5yErPp4sbNmlerGV4 kryb8HGPOOJYidlJUzl5sILOjughQw4nAkssxvHKSwbDIslGFTNNR5hsNPWLpn6PDHbXUf3Uv0Ut EWL0TlZ5UCM6MIL1UnUffo/tifhT9hauG65t9uaCqPGMnzcLUNi8BgvRZ4OP51GLMFtCJFb7JFuf FxJ6y757654Imz5LflEGYDgCZhu9/NRoZ2HUoC0RvVek3pmYXgaglY6PHcEq3zKCIZykUGGx6ECy LoVZGsXq0jQK+9EFKGrCKxN/DSIZtrlIahE8+9bj0mzsJ5nPWPgvxl+TR2lyNgIeag== T+hRLTQJh7s8bCbqWhgAU0BXC7rWexX6iE6GnPmS72o5MLrUzsqpFSIg5Mmg8NSzsFkoxlR0LmLd 273QYXFaGUZ4Ry0O07ANGtoWAmOfuS2ZyLhWTkY1ImwSV1zqRtvDsJg2ddqMtUogbJwyGCDlhnH1 TM3VVMkoqqEGiTaxnBiWASjNYs4tCrGoGWJESYxthGZtlLL1XKErAxAgK8PC9s7CVHYi3RSD6UiN x1Pbw2xRpmpd3KgIF+aV9QrzloPLoz+hn9927s5X1avJU2dO6mnR8HldtT56zXQEaqwLJQcdxjUE PDfFgHMJ8hDq9qE1KtlQYTRAAMbHogFcjmBbVA1abq4HWJLXvBJVMyjNur4BBoCZmq1XJw2gUZ0s 7uDJSnu/LJVgGCBbTZ/NYrR8XT7VuCR1UrEXsPw9dfdzpWK+G37OX3n1BaKFW/NET02dWGzn8oF1 pmKkJ8cmpZe1WFFWS5+e1SH0PyL3JcoWEnEDWybdLlt6TnUajYscULJmMgxrYiGX7L55/OcE6TC2 GYfGNcORH/0GiuZz5A08WtSkZPpMncjC+TBsL2P8mdohZkTdC2EssDRtuVHxsNmWIYznH717UVha kqFxRmCP+h4aTcA4FPkBijm3ov7p2iVgd6lXVdKkC0Y3sJKsoCmLZhMhliAyRUWb5OlywYnw2M+7 eYJbaYa9jLZ0ef4C5ENAScPoLlx356ZnFSFI3bKETmWAbEnPbImLkixONgJ4NMA0hW4MADaXbGwq 1PyxLKZI8PtY4bCP/oQlmxGUrb1YyfPuVm+oEIkHjG4/empm6b+tNoz4u9STycEuKejehJamujDl 58Xq+TMDus5UalXYugWKlRtky51RR6gpSNhsSGAssiHPCnCxWdxGFUUoFquAhvrR4EOpFlrLxvhQ qhxS46vhxq3B7kAfu+nGCHaV2Q4YMZmVn6NBbaXWnPolrOMowTWwmkfmgMQRmj6DuKTUyUpH9oP6 c40y0mRvle1eIynDLTsBTkSHbhJar2aonmpJ+SwcjPh9XeCnDIRvadJwSLYOdkmVc1q/vLZ16n6l t0JYa8tM/ciUf0ubc2DcxSMKFjQ8STezBQ27h8a1085ZqL6LQ8bmAV0OtQct9r7ZHgzdULOgXjAA 6DCyNaUslGAcB15SGeIDecpW0LDmAAwGZBKbZ4KYPN8rPLDyyqi6y6j/OpEOcGamAXNADU4rPrqm tvjCoB8yz79HA+UsTehFGAOOFnhWdTFIlWxg/H4sOiTn6iL4Z9U/Gc3ukimFscBpAFsyiE9Kg1XY DIoGqqN2J08sOHWZffaMppbUujWbc0uWHXq/DogdTDcauQJHbc/rBKFVJZKI44WuLYiUew0K1UHJ lUR7iTAGQxzYEq/MFA+drxVh1VmnpWzp9kotNFMdn1F+7y0mNH0xP5k4HG0VIeJqK0tmhMqzMahX L51XVHloz1NvybA8EVJVP30y68XqLdGcR0daQtHBax1hEh7ANJVCT2qwjpRjj1dljqnmWGAALqZR 26fiZnlEeRUIWEenTQ2o2BPk+CBMQNe60bNZG8dq+dEQygBhCqYC0EKdIw0erbynJHMIi43+8yRe zHrTSjuarpAtnCKeN90pwXM2Kv5KTEH2eyXuqzOS0VpqklVvdsNochsM/pMlu6zCiENMYScsg5od uTwa1uGg5aD8mYpB2Jyl9AliQGOzRLh0CM0ho0kncmuKmJc7DXqHzGV01uZzwQECv4pGbPBDxUSp wQo2s8STMCjmBCd45cZmk9Wi97ZSitFVrEbDVmaD6NfRoCkLFlEHbeboGLUEXWvBBFPbdLNiQRrJ v9co6UvZAYY3r9ECOtnwqVVxmqs7IE57ZUBTqNOqeYtxtF9FeF5P+xPt34pJzRY9416v4+TRrtBk dNkcVgwKJsYseU78vrj6UMenKXkSnfVpxbbIUl6MAZaGkDeK2mo0qs0sECUVWoJhJESq+m0iViIl ni7kf9TMJlm1CqyhhaL1Mh/Y5ZrMJB6gNuqgHfBlvSUYuLG2EfOMdrkThEHDfySMgDBMWigZGWUy mv+aJpwY0Co1TxYUgxJkAFo8lr1XIgcSOnjWcB9qmghmp+biWajg9COIxVezRCNXF3K36xMmdpxm ZTqmreFvmWP2yjpby3TqjAhoFyMTqWwrIvTOjrjqMMAIiSULidEAFesQKSm6NliBl/qrJGwWyrH+ etQZvI4ok2Tv6Wlre6jKyxQFHx3E6AkSYldK4lpHtHFAAkjokOaP1huUOouPc0uDHrUYbHSAUelK 2wijGo27kCdbhwX9yrMtTpwFzfA5miuU31NQD4sAXD9tkb26YlRRmaARMY44NPezwMGHC9E+Jtk+ pjLACLyLNQslahArpUDAgTvRjNbwGcJBDxbMNm+zBckKCm3Rh02Fek5ukmOIcA3vSB8DAxjhpYgC GwSyo2yDG40Y3VHFqAO6jAQ12vHJYzmErUhswCn0nmxuqsVtKy3cURfVYPswvQAwvlkTFMS5YAQ5 DEoXIVLOCh+XAbzVOunToqn5QJ4x9ckJ90Vn2KJcKz4l90o3E9q0IbduRx0Zx5POVDzWIQdOTGyQ ZFQAMdGuYehHv/ZWQGffIhYtFSEHTNkoR+YmC6hMQstS5tdEHZYS0jNXI4o2qhWY0bCGnQIcl2rN LagGiC1z06OaRKkkMGNYYaAdmKZx1GJwgb1RES8o+W/B8DHR6JvpCTQrRGhv8VCYLhJFduwV4/sC cBkRqmHSBSN5996eKju7EEV+TK2AdYeWabQ6EkjRfMzW3X6xmnc7mLmOEuh2MFjTYnSAkIPnk1co 6hRHNR6JE8TTzUbNGMpR0Kvu4RNQDRRuBlwF1RF71IdxuYTqFP0EVqmExkVjaYnQG5tjVnB/0xb1 8rENsUrXWo0g+7QqzNi34JiQ1jLWFAA0Yeg8JjfTE7hpX295rDgUZULd4OAMZP0LattB9sq9ojLo zaETZyFWN3Xc8qA0mmymZodwNE1Xq2HzV4R8RIpwmDxVivN1bptuWzrZFMsahvtZhGNNP26DHeJM cQwK/5rneYjeTNeK9hpgVq1JaGrlSnLAYQ2mhnIpAHzI+3A2QBu+trJfzoTj5Gkm6D+fwf7Irip2 o43rZbXI5wmTr4uCjGCwzTrvPOTWqp9mV0+h6o21VythELBAmDxaGq46y9VQ4xAVLlOrnNGtjEI8 igTS3icIxXBxMosVRFIGw3sAAINCeqnNc4iImrebARhCMcEF5WmoOqegYoKeHGULHBq1jiiKs+1C 7nwsQt0jFLA18pIBfKKQrwMlDUJXFL7WOrRgxG0UJ/cJsxUtaTm4OrRk/0TyMhHEv7k0S/hp+DsI sNWSg2q7BrHUJaroDXESJIVKQm1QVoXVX7EGzVggwiDsLoOaL0hwA1leuKLBMJaUENY+HTQJHsN2 pYthLXaWrek0vUWWsE2uc38ltfQoT71gi4wOnV3sjE4lJTmISWhtl/TApqx8zjpfQ60ziADMK0GJ zwhu4PAAYYAg+oVoN1PdADygriZI3vJMxVl5POl9NYdPwgpeaPULsmbYRWg5pzxaagRjU8xp2jdo wpyTFamFkeDIWtAqv1dPMkcL4/oBYwjSm1we1RICWXdmNTYfETJ5t95LYgQ5SKychczJhQHQPzZY ipCBNw2ULxrTy94cgwDqNRUvmHGnTt8E/FkdwBjS2dCUAZzx/AbJ5z46KqGV8RUZ9SYDLFaUPni0 u3AcLFgdjIrDvvMTD0axjwD7ICl+Q+dQsHZkMGIfmNWQRpGI8gYY3WhAtzYAAFKweHEQegQRoq19 mFCMwVzZMIhjB7VBQHvnpF9D7m/OIYGoI7YHGLsJw12wikA9TxS10RpnWXduEjdsDrDOEUWtwvqC nO4qLAUkUUauNeHQg0CjThjdjgjuWJtMKZxsK6OKikD3CXuGM38i9Eaqj5RwWqZ9lAz+RuMmjMuN KE+U1Ni4x1Aq0iRJKAPUUXbA7ThVuoBBNcWxjI1VGalbbSwnA1QrOA2jVoVb0GAVgpc1zU9lZ1WM 07aPVhaEQuQgHRrkQmTggiRI8HvUw9P+l4OVhB5NzWDnTiVQYQpSEMO5B/cgeKlitBLBaHRxMU7f oFhtK9VbJTQAs+qkaMjfMMp1yEyB4uVMtwwQ5l5GHhVjU48WjfPEYCQlEz8XSTWTECZGsjiSBkGy bidcdQcPKJitT3yeGaaF7Xqq1CzYHegSGeYmQGy8nXB99OiGMvWQWKwOys8tfIAh9JbB86OU2UuR Bw/gR3fXYCWVJFwwh147OBD/QUGjgon4KhincgCZK8nGMlQgq9fObTKoWc7caQs9GhWHSmQPDUsL LoH3hijzU+EF9xozUjjNzfrF0CHeIPvURE69JT8BxV0zC9dbgQEJK9oCwYiiAaop02VqNIx+yV6C EWcQRzAIcv4DYr9YawYwxTUjUaKqFYdnQPbATwa1U4gbi2HGEGOwEqAFK4MiapyCDomjzIL7oGIt o8cuES9G9IlEKJZZKW0A67VO5J4BNheQGwuV40BJodf6RJqkOkIGCFMTI3jo66xD/2EEYX4KHvhB EMamilyv/DqkyyIq0KPygLLnAiKIAZRhJ8HBzc/GlOQr6Nexo9efQJmSKkFBDBlNSvQG4kGxqwh1 jv8aOFkfjYQJwJhlJFmLNc3JUi91shK/HUAuEmaACReDaNRRr54tEFUZjgLUeIOX/OAN8GrZ3Igs FIo3EBekY+wh8oSPQE+Jmi0Kkad2PuvjKj8ZJ2QMt0SRyRsVF4PzloSUzOgowBVMJ5oo8hlCnBw1 ml2XrQarRkPwZ8O5rT/AG3syOGWKS8GTwYoxFCTFAQzOG7RlVKWliHTtqMWTxBTSDEhijnbdmave Nt4fD0Y9lQHo5S9wA7HDgynheqUSc2RMLbnnDMWYT8uAKIxMpmEynJR6VMH2REAUHtxen2sFrqI0 hiTzBUngxTz+tphQjWYC0aSBSIYNQdEBA6skIJSaFFXIw8LlH1X+WVpxvNnwVKDF81N/jMGSnvzc DqSiKz2JjVqBIwRnmwc5M+p6EHslsaFAXQ/VPuo44zJh0BS8GRcLW66Uwi5iRemuX0BzP4pWkc5b fwD9RiFMdXVsmN9A3Iw7gmoV0F+tVkTuOOJztnmQs5+C0i/9aEo/KMKsFLq55gmHzuKzVTFxGhUg 99tmyfjpzOFHcRKh8avKwtn99TyR0XOGlzVgnmAeVOTPCjuPCpGa0GQ554mvlsTSUS1n62o3Uu9U Z6DZTSr24OM/1zmomMVW7o6j8pbLwypreRmN4AmCJEnXQv4WYlQU/ZNmJrmZdVitoCZTUXkBfOHB FFwQWT9hOl4zPQb9b3+UxYgPXeJjh2rucbg083ajYlBFqHGIyMWVErhO8ndl8ZTLWuZHpWp5rb5q hmcmofJXcL6ENysVxVs5DsfKvQ4AnHWLAItSYf/gEV19eOlLsLomKCknJJ95EXTVjQ== xtCVaC87IFIpLF54j1K1mFp0FOoWMHtexNBBBLxKJ+bUrOUmDaDCaidRQ/yIalJjHaH9RSASVG2r 2HvKwEq+OkUp2JMX0FpJqli2rtf0XhliFIuTn5FYPVCLFUWUsmtedFQOHSM9o0uNblYa0jMbhTr5 NCo5FBePDxAAWk5J8IFMK0VurGSSqfmKNjqi/I4ce6nYFqTktNhsKQsNm2VzBHBHJbhK+ML5Uvbw aL6dZmzJK+LYL1WJeoRT2QFhTUNxI8ov63w1ma9mZyy9rnT9QNgJAyxCg08LYaSH2SNgoddYOWhx ZR2Zg7O+EvVwKoxUon8g7FgF63jJcIvrCLsRVrw6FYIjk1DlEkMgnJoVKxMCXJIWNYwKmSKGVhdG a7zGsGu2bGqcWJEoti5zRtAX3cuFsR5ZhCgSylJrT4fQdDwSgt1X/X11AWj36ffK51O4OFyFwU0Q eLWq6VrYJaSaOQZRNcxyIrUFUg1EGBkj7ueKAa8Phiwo34y9Ico3ZQdhyHxIVIIcA2BF4lh0gKoU kfzB2LAjoZLKc8EBm/okJGfjAk8goQXKeakVyNUNrCg4OwYZbyKWMWQA6YksfVKBUBGhgpNp0BxQ iqG+Mj1AGYUcS5TZKmhhSNVANevti08ohdGsTX1QOFQ5mV/TKFyyJqs1WuBzfRVfzOq4ijrOVF6E aabZuFGpX6Y1hXJN3fJ1dHGmwk6hjq8acXyjA3RHQncAkDo5o56bkLneygoXKe7lDCCc0JyFxaK/ 68APFY/jvARxVHSe8qLn9mjHRwtQ4vxkZGQp6iNwu3BD0wMGIJKzkI9wrBwnvEe1BtXTau6BHlvt jmAdugmfKp1UKAlgcXMCFEs7gTwa1DKiWUyEaN3PCfvccKXHOiW0t2gbmnfgzYg5fNFLQcrCmURO kaL0FgNU79av1bAWj5rSDzyAM3sqWokaTYsUAtAL+AjDR3OpJBxQRMu8ZqK/rEjzalOfHAUGrcLM yiIn+VY2QBUFPTiu6GZSOUeZIFhZHpmtnEZwsnILzyzWX1y0aqsiClmcQdWpGkNKD2krjaqtiv5W xZpSFmMFLQNgSfpaEr+06bvSuNAlqPNCqc5RtqbUeDQ6ymwMH0kFATaDhSlRoojRub0423HOGNUp j+kZU05rNFsCq8HUYFixpfayJG7rYNth+7qpWhtEBTTxqsaLcEzI5tZgEukMncJsXNx1rnqixS+N sSnAodFwWmbidDPAIGHUVU00W4/9qPpm1T/pxkSmE0q8mQLiLerRt7Dtnpt1WCG6LgmR9GUsZ0EX KlQNkbckoJ0uBmCSesdIYpQ41BZtE5LAD0BBbuPlcBEt3+NA+zm6L++WWK3/nSvyJfqzUsBRG/5S pFMi5pQZ0mbpTFHMdgQ3scwq0/UjuRpdKj5hD5Mr7rXPgqVF08TX28zKU2inDNDEUhGDTgv8iKw2 8kclIgvFQ1P7h8JmftKyIBkgA6hOvAjBguMKlqOkpWZjPH3PqKZfI6QSpkCZRVIzqDjNVvQ6AEP8 5Mp+UCRVueSqyTcoAoUTjaU62zEXqV7LHtyJ8IrHpipzdFdcCuJ1WTv5nnC0WInDSIsgAmxl3EV7 DckADRB4qpzWVUDRYvkKtJ+V+mypqEYqYUIRLhFB7OLMYVgW4BipBl9iVLSQtdM3H2VJtHZmjPui WtsJ9DhzbCKozmyiynOz6oOsTHpveIBF0LJyGIiFRttOwy3EmRG45dSGvbiyY8W+IHpNyfTGIANL OKXgC6Lx8AnTmWaJR3OT4jjIV1ndRTdVSBHLqZTKUU9oazLehMY+NAM4U49C6XEX6tz+1cHAJapQ /VLECyn6lskz5XSj5spOHmAZLB3R+IrpT0bDmYTglB5V4kzr7z9aJGoBd1FKD3Sg0orJ4q3LGelQ r4sClBwuoUiVcCXO9kBF2qk4SQ3KhlM9VOxhOT8k66fgwUScheyRVrs6hp4pw7JcWwtyYdoAi/En 1lbF8uW5SOzvhHNserzRMdMEDkNXis7O2mKVtcDmaxPYmfOgjPZJsog8QDXEgy9gbeaNoT1vIiI+ jNRQ1u0Eh462u1U1Ej91geWYk3LPRpuuZTBZe6xiYtiyWELw4DVh8jIxEZifmhcs0aeh605D12s6 C2rQKWiwfal1sxbddPWqrjGlyDWY4SNa8HKP0Okw0BgJNU9OxfrgVIR3dHX6jJLZOBdA0HQLAJM7 aCdT5XIW0ErWml9iqi/Yx9ZdwGfU50YvXNknM5s2JbhB6RtQVUHUo/CRmIqabaw40B3BukbRoBob fkw7bNQkG3XOhv35yFbetOUfUQ5k+bIeoY73moKLVhxHQy7iO8eAWne2JiyOHcXeZWsCSJLQhCOT hTiIOFPOmyDWKThCaX0JukhLawMWyLQSqkYzbTQXTs5cP/PjCs41KwOhvD6bdbyFNANDNM0FB8sg xwhl3sNKjhGYrRAOmYYJQgRXDln+lGDkHRC0obQa+Rnc3FpZlAfBCJFwCy8PE+TYEwTQr+VqHjHt yyYqdzQI7NZMEXuu68Zqbc/J8pEizeKs3IfI/yWnTiQq2kiTrBYx8r2E2i5UC2XJwhYngDO9l0xh SYY391rW14VRSggemFMcoJFgHG0s2cPk22iAjaEKvISpGtkSil7xSixGSQRpcmGKo9JndGXwYLCu iyxHGcBqk8lnQka+SoUK+zRNaYRcRpqHGAlIUV+oTYyzrBhrFXV6kRqeMorsnZMgAU/MsMqpXY1U ebLY2wCLx7VKNrp+mq7YImqMrFtt6H+4wcLbaAtuths325gbrdFHLdeNVu66PfyI7bzZzt5okT9i vW+09Df6BI/4Dxt9jY1eySMezAZnZ6NX9IgDtdHXesQr2+jBFZDP0fmCfofGqUcHicZLvNUVRW2q Ki9gxz6dCmrne48yABL6AHtq06m58YDdeBQ/cmxvOuE3mgKPmA0bTYyNxshGu2WjibPZGHrEcNpo ZG0yxx4x3TabeRsNwkeMx42G5j9svm40ih8xoDfZ2huN8kcM+A22/kan4DEHYqOzsckr2aByH1XP GxX5I0p/kfNWYnHKRcpthxnjwwxNMupjPvRGf3ujZ77Bix+nhtcQ+fr5egMjd/0sfuTU3njCb7QG NtoNj9gYm8yRR+yWTTbORntos+X0iJW10SLbaLs9YudttAk3Wo+bLc1NRulm63WTmbvRHt5kOT9i ZW+0yDfa7o/Z+Rt9go3ew2ZHI6GXHvdB0R4Mbfo9CsUJ2y6pC0bcGhGt5aLprtpLnK+VM4fMCuVP tu4WMUw1dYzBZpgqgQYy8OLqUxF7uBMTj4AGntdw0gY1vAIIPiC/Z8bk0V5Bj/1qSb6orYrkGxpp BHenYLeQLJ+a0XGiCmVDTsaCFQPS5kz46CcEtNyMaRyj+joKmiDdjD4Y9FoRF5axBro5iw2rFVfU 4kR3YbQANy0ioeIlhRmh70KA9UmZXLh1DhE7qklD87KGSu+qoC4c+4pWI0AcoMoReCVK2Wh9wWOG /kanYKP7sMHVmBSm6Evm4eIUD+kdSlAA6KYqnEwKPceJVEkggL4ZsSzh56T9HQnBzUE5FEk9Ua8t pEjVaA2DRLgE0IdzZHBBMsaSVJEsZAcGWG0EjmtPJHcp1By05MqUCnFLVMiLIlRyRo0/tbLQ7D8t GaHc4T4S+LlD7pKY9qMRC7clKlwBnRcYfJETFGhRbZ88+iMTaAk9JSogMoQjUJuRDDVBfBJ0k8A5 stUKaIMI3LpYWUDfdPxFmykARuoLetBNvNnUo0dZHN3cu0iZgBbjTqWgSuXCPCJBsEK1aLWNRASh XGykrWX7VW6yoDIlPqVS0bHVudm7Hq5o3BaNGpJME9CJL+B7pEOsopscNWSQL8tkuBktJVJOmv9N KEaiM6QqNoQD6jIAMyToibFkbTxg/XvJ8whKz98AxSVvwlupnNXXRKVtkFWgNOWkxZ2MypzNPAch j7R05jqSLFJbRYWKhSouVXLlhnxcmJlBSgYRZZho9iLK1Hwx62p9G6/s9RHff6DUAOTcoAAfUZUb tOpmBbxJUz+i1B85ADYeFRuPlY1H0MbDavPBtvkQ3HRabj5YNx/Cjx7XG4/2RdY1iwWRTkIBVLIw mm1QeU2wEN4YPZjsAeplhvYlEYVvszAhpgOhTEElpuH44NqGnj9k0ilUhnaAQJtDmWpoSGdKl1rq dKdEgPTtpC1ZGKSDj+yWjRtr0xZ8ZLtu3toblcAjCuMR5bJRDW1SWRvV22ZF+IjS3KRfNyniR5Q2 tfKTGrc6EmX0lWTX12pPFTI8YqreCDBPuNcjkAXgFe3+gNZs9AGYswvdLtUWqtU0BLfmrBlPGxGW 2GQLbbSbNltYG6yxod7cQDBzqTebIlztCASzUlX7kWkkqJ0Y8/RwzmijNJFALVKNYZ2mTSoPA4Un BRpTUHbOCjcbC0Ri9QT4NX6vEVcypoxGp2oiVh5X9QMNIUuIhEFtrCr9XHnc1tJgTdJvGLS/gjyY VoIFb8BSEmbeBRS1GQU2uYvZzyY/EFRjCbQXgdDIwbDdSQZIAp1npcEcgkE9JW7ELRahVn9QC6tq zNratpcUmPWF62eL2plpEK0QwMZz5R3tQ8V3dDuqSB0YAZTIeOInoMNFairz4Gii2JOEwbgAvULo pGcSnVLOGggkHNLFGR8IEdqLX1niUFtJygh1I4OshhRnE0ycs8gv1VIIZps+0qgYVscUWHx4ZWiG ax30Akq6YjM/eaOVt9Ei3Gg7PmJnbrJJN1qvj1i6G63izfbzZlN7o1W+yXx/1NJf9wo2+g+P+Rob /ZJ1/2WzoyOUnbqJES0EfouFXruKrGunFR2m/tj6IhOM5yMLcsPSfWSZb9wSmzbPIxtt86bcuH03 b/WNamGzAnlE2WxUTBtV2CPqrgBiSJ2DB6eeMiOGbLgx2rQSGaTDM5VxEASpFKIDSUsMGNobFNyC znXVWgZQ91FjOyFwb+b5ok1eA+peujGhtSHAdNN7VYHMELjemHAooif26zJwogXlnmTBLAGVmmrj UBe9aNU4BUdcWqxfCgkbrkVLKjq/xUojoUuDK5A0HYkxVagYcHaIj7qPpIFv/Bbmu2ZaRKgxzOSN BadmdDlMAVV5Io4S0mBxxlRpYWsK1hmIznf9ebMAJNFC6itFI4Kgn0cEFhE74QJPcR6UheeNLsGs 1SBJbirCpfACSPl0MKkqtwNRakw0sDp11Zow1GDz2aTqSYQagczLxLZD6GV1tJZhdHjLNyxWdk28 x+pSLVOZePVTxYVCshmO6wAXM9yuEhJmNyhaKHSevSZJlQmPksWaIx3t2wr34OYLm3BbvlFNqwnG omX4J+wPa51nGc2pqPeLWoZOXlmUGHULZTeL6arrA4VXlQpFVGPQI9ALgxYOiyj9BUlFa1grMzZf izpQDERXekHpj05H+G0xsowccHzSPtDu9pmyKosa51OjH2JXkD4oi9Wh0UwKMwgd4A== SVsNMQQwiDAYMR+JhTKF6qI0Z0ipryhv2oyMmzS3EkORA+Xs96lWfQDj+BnMsou1haB3dVLGrixq eAMGJMq14OghmhG9k6YRKbGuoOUmWG/5uQccgQxadCrSVK1YSmg25UDECM5VuIhN8Oi1Wl07Qf4j GyC1iR78gSdQThWZAe/wDUG+QBvIBkA3Tyf6Aa+g1gaVT2nRPz1tBiMSJz5O2HNFc8YwUUHn0RM1 GKkD10SBiqzoGcTqQERcfHChP3eSbyNajqrdjxZjpAviy4kQzWXilHbm+4Pz0WnGhLxsY68DGTll dSuoEQfNEnfOc/qsKFYmxMHSlJUCbQqp+YvQJnS9UqwbHmV9QW6Aqt/EyDJ0kskNXDqbzOXNpvUm I3yTwf4TFPaWf6ywV71SF3DAN6VJGhIKQlGLqlG8uy7hX82VvM6KUrkmgn1t2gIoSk3SW52Ou2I0 EYpMqHkwYkaKeunvOab4Rgfo1qtey0nPM4xbUbeFs5eKUKWtRR3c9hJryFPAqI2sx8ozjd8ivbH2 TqAOIMCHnNJBsqM3Kk5LipP4bE3MoTeIi7TAoRJRha2w1qhAR6BFwdrt8BwVJItJGbZuVNz/rIMY 7+HatSJstYbp0WBvYkWoFYTAgXYQxRAQc6HXeOaPXL2IkZ2C9a+qXAkKW6yZhdetv3ldWlRD+FjJ xwtq91TiPNQVCxhapSiiAFBm0hxS19H8hPGZKoghadxqhcRu4eAinkEsRz1QcTNYmV0Jh2lcFYqR PU/7LOTQn/kJLcP4A3nE/DFhOs1vMP1+7RNfD0+v71JB3JvSWJ3iIGW3N2ufbuX7L0toawt5bZAz u63j27qVmxJQULmkF8l936jYZ6GLW4xTnpr4OOGEdJIsEKGCWrieGq4mjauMjM66JRPXZQRvkcbQ qPmMPDDJRiO8WewHhWaWBUCEs4oToQyosuw6SUxggCKrmMqOvUfzlu72uZUHIIPWSKrGA6xcygkY sH2iNYPe7aRIj5XiHtzLGaX8/FzTtfoO6POSfNKrmWjq4e0WiZPKq4EEeRF0ysYPeWEUJjqTWTvg 4QsXz+/Hpo8EjbjtVFFwBsiXiArUZ0VYLWYHFu5OqY4AQ+5EqFSglPdSR2asGwrpWKleg4OvUnQS UhL5nKam5vTKDlWQoxVXQxFgVnYDTJquiKwUautXO00NUEclOX+YUbK61xun7M1H9i7XGGZFiXLG CZMMxJcOJEItaFu9pXaTzzNb3PiqjD7VwNbGTzffalBIl4puQ2DB1KcVCrc8SIKnV4iD/X26VzTP jCZN3FXyEdLoOKXfM06c+DRAQanpdO2GWV+bwzcrquvhMzLxr02zK1okDJ+G+4iFeXGsztLqSw4p Pzrak4Fu4FHxWItMwxvWpfh+K0tx7T1ESz/Qzcrurz6JA6tBknrHVZ1AoQghtXWSM1WhNpdRhf1G B0g5tklln0iaOcQHiq1oa6aHupUKQyEGRLVkYzFzlrorHK4La08wrtVXOMO40enV1nORo0D6tF6z f4U4TJo+weiyPT3YCIMwVYBXdQm63vW5hbqMoEwnQgsKRd+oOBaBwy1CIX+2+i2oEzYRQKH5ZmtR c4tAMRcydRcdwjo6cuAZ5CjW3Gpl3JXb6Zcjz2700aOIVE0PRrapp0cz7otF2j7gcXG34mpYe4tZ zM+2/hB8t7PV1Uqp2YoGB0QGEGtdE9vTkRgdBechAqEeN34QNbg9hY2rBkg4+iUoT0MqM8OMckYS qYrXqElQHjvCRrVF4wODAni6thoOgMBVLsa1AfAEeiUGwLXVwjkro45iMGaKHhfK74kjZhKe6aDK GUCWXwW7pFYx1IH8JFC7lABwmDcPyJgXNwJiEaYAFg2XrHYQV+YJpOsdOm0ROYZy+3jqAgdH0YBo C4xHitYDp71AHRPnyLIMEskWq5a2I89FRQRi4FCsNTbUsShkgZnrgRhwlOM2LJ1LKG/R/TePSq/I ARZcKQNQUUvSmzHYToRaCoKbnTD+ui5ehaMDlNNkjLxZQtlJsTlEZ8tJWKaejM56oJE3pW1rurBZ gANryJH91TTMN2hxXARKhpwssjLOVKyOCTe2sfoKdV+xafTK1nQA7vKDcdUpJq4lbQzlkgToJNan /AJUoCFIBC5GRqx4Eo9DydEk6YmiFMQuG2O/nif4MsEh/IbGlm4QUY9jZkXYDC7sqN1ffuCEjO/N HWQkWO0ydDNZ+8UIRqliqiolq+IYnKbvRaYE9H6xpo5BmPff6OpGpDAIKc+Z7gXwX3rBakCshiFF AGklQqxYcAyiN1wQgwTkuAvRy8VPnYinAdSVkZ3rotPXAFUHVSiIU6nvi50/LuUPevZq9eJhRnhv LPbT7IxGifPsDk1FxkHS2g9TSTjZT1CO0R6uLx+tF5eKoSrL6mp8OAScpvUjRK0AYvNX52Z2mqjF vPKbDWt6Rch266pwdpoIKZRbXDVKKdGxZD9Zgyec5mgNNTB8JbIfNcJU5XHPdNz+cm563rVx1cyn ehRlbpkdjVyB0eLEBbIy2iQKl4oQRXIrv9cusWb+yqVaGUEy1R/Tk04W+Mq8KMUTEQBKZJJs5yat kShbLc1fVueVGMlA6cNNl0SoTWXgEm38smpOkDGjXyxJOdqNhrqLOlDJ6G8o/q1vRpQKwI+q7ZmV ywuhcq+UNkW6rYlQe3xSNivh92rnMt2LAdoaaF5yMYxSoi/rlSURdZqJPC0pzWhShYFgvwZtqUuG RuOy9VSd6pNysFqsMhWdZKb5TiLmpqxnKs4S0ON2FGghQcj0RQtMrNeCMycyCYZr43yPD6HRX8oV VqDRKVnZhPFHxWcq1qA2lRQhn6QkkSzMHijCRVL0RZnbMT1OVl4JhjIhtB1rthLs4Fu5EQMD3jx4 Wvn9+lNpPnWspJU74aH8BFKYHsoLrcXZ6loo3kqFmKOP3RuqH9LUJyWca1JUyOh2mkZd0yJNUE44 R6P2CxUVafkWlYRqmtbNGFdC3nGikcCN2tWLEKZarDSYt5jREAVoxWonJjFBeeBqJOtBWUa7sekZ BptUogxz0VRxS3mMq442NaPP1qBCQ6fkL2odISX4BaZbhDlOkK9Bpl9InrRxcIqI4VIUQ8Pj01M1 5jHBxKitREHOIkQkKcM+10tFVqUNLMWjrKcMUVsKnREVb1Dk7Uw/WD9Eg1zNQJ4TzXOxc1gG3IgY XcSG4p7kANxMS0bFMu5YNE1WoAi1npeE6iJMwiqgwgdqDWKsUCcdZOZprPD1VoWqrSgYYnH76XnJ zfFrj1utd9M0QhFQ0Oo0aCd74POynFplwLjHoMVomKdnldWBn3erWH8+POFphCwAopWzYV5047Xy 3K5mKBptVopZbA4FlYzzg1LhryLlh1raPA2RuLZ6Vftok6+Hqkq7r2JYoP8SB8VFSuTZRXckl71C zL23ZP+q+c1Z6qC1AzDU19W46vdx0HFnwCXZQasvzT3wXBkrysjxwfOVqrVn9kZmS9jEjPYHbBJf vFrZhFM7nJRE+bBNDcxaF6p7xT2gDJYfjXg5Cp/qihagDqCLqmJmvlcW8gHITto9vkrHdw8kpWpo 4iFXr2+ss5Zn5WCLuo39qwYAqM1thTg02R4g43HytEGVmxocZ+bHltW0/m0+FvmedqEu95s1Mcd3 8NzQJo+KeZCzzWP/cDKLGu/YWc6Rvps1MbqIJKpUwBlvNZcOzSdKkLTXm/UB0CbIw7qcjASCtClX xmxkJC8pxPnoXxnUaf5k/Q100xCTs54vaubcqFj7TxC/JgGGz1Ss2CuIT7gWJhvyCtMQySKQ4u8w 1dlqHTAf3oh2Rer+LB9pwE8jtyr1Kw8sYoXeFO0cfiLwZem2ND+VQ5CxaC9wgSQ70+PJdi3BKMUn ghaVW2lFLYUajcqR+uwIom1lSZFYAscUV9Z2KAygLqqGk9KcUh2HGK0YF1PTV8h8O4yrvvv8vAmJ uvl5SQdkN10p42aww63o/JiRy5oMI6IPX6DzYRhNS0Etqze6FDSTTnX4Dl1uSSw+MlW4a5dbGkK0 YhndTNZX3uDd16ALdV+w+GsIaCJHqU7t+BEYAd4eCAPCPpTmLOgmQSULjd1WiHUAJV1eLDMZPKh1 KT9o8NZAa7b5ycQSin+KV4izv8DFDbT6YJowd84J81dorQjlqYz/mmhUdP8Q8FemjLDd+jWbqXEq /FBLvwnjqAxgTJZ1gIRJ6IuSg1rVLhd18JVe2r3JAGRqgRzU+EqqQC4F5QjOmAbGlBoEFX6x+gpV mzKeqViVAOFAdTHQLMhiqKOpTFis5EgHeKNTiwhkMIqg4NC8iXmyvcrAehqE7Re/VwB3DSh5WpGh geSKMBVQ2RAvgmTP8bory6COerxpIQZhj7E1J52EaGYpAomuEFihhPkDCCBwZ62gYt0nK0Iw9K8I +eO80QGijyoOprZp6yjdMq3L16sP5qwV9PrO+9gpHWgnFeVs5ja2N9gSqbppnWGnLELygKvPNg/y k/TIqP9ojwymhGBW2cbUN24Sn62Kq6qRAaFbl4yfErLuz2Zv/D/9T9+prxalwyERilOY9ebV569+ 9cVvPr27/+3Vxf3V7bvzu+9f/3MX/fpEUmTF/dPr33x+f3f17q+vf/3ZZ59eXHy4+fPt/Tld+0+v /2e/8pP+H3wKQacyizp/qZ9m8FWUoJN3ocSVpPIpXpthjNc6hXGhgxlq1RANRy8nsiqKNgdjZcma hjIkcnpScFjinNXybVPbUtosor7YPEdFEaFyEDBW25Ry6das0fK4ReDeLGTsNf+8MLIb8CFFJBPb +AJEDlyJPNqqOMlLAWO7jMdSPDjXBpjbkRYcmuj1VVAnEyMSWNTARi+kwnuJJlDXHoWJU6m31Bg1 6zaiO1zRS1kcTjkqkigTUYbM1YXOPqM9bT8QgsDvuBFWMcWp0KtkEAkqofHoGp5HvL8gJ01I4GIJ B8zoaJlNGS1DQo/e7z7btQnRr9CgPLiTXkUN7oDTJwtZhgIsBSWetJaFcinWKxpJ7iUjNUEZUPL+ ePqohZtbFCOODihLQEtIrmoR0PISkEehZKf1baDMUUX3erD6Bu0ALgk1DZrGKqlAHiARvvNCncYp qwg0tbNWAMOXpUC/tIqpUUoKENEGpD8MAJ1D6p1J+iXKVUb5AXX1zKjVKogS0VEZtCRkgbnOLQYi Ot4olXbVvJNswYKaEHpadXAoMyXrqMbRW0bzlNw0XWC9AUuINIlWZFFHwILMNIjYadcl8JUP/Cbt +4AyAUS4m5eSPRYWBeRyv8mEggJjJCW9tSBfjvnj/NeiCdRF+49yIjLrYhlpWYLyCXaertXtyo1c 5IQeBfLN2ghV7T2oA4gERbnc+N4p3ECJnrmZfcICpp6vPPWUt7L1i57eA7rMTfW0bqyZpVin/vS8 b5oiE9BNkzlAouZ+oUCRhpW8WEAfecrIeVR5oM8pQxOtdkR7RNAbFCThRrt2elsBQQ== TAhSOgus+gUpQ57oqFniERujv0QkAm2qaawM3I8yTVHSupmQ3DdZv416bGiiF5lEms/i9FqnkAkC TRsYaLRmZ0C2U0wV1jqBwpuBYLU0vXFvMs2bOsvdtAUTTqcQKsUaXA66VmsnqiWPaDYsYieJe6Sl lb6ChNYUFWQE/EWDppQ5zYQBkELnyASWTECLTquArJI2E6G1HOZaf/TejoYP71OkY1qpIl2I4Nvo 50DSBRZDG7fSw9FbWo6FWR9Kyfl+91PZVJuMnJ9ucPIxnaJduNUx6g9wMhH1wIKFBsAP4fXUqMKu TihS+2mebaPtGsukRJhPUQpRFhRgkZLO/E02mM1/++nsXPIkk8G2K9DujqIyCWAHjTwtCeC7qqym P9WDPO68JBJ+8Yfbd3/qY9z3YU5ORMw+zfwPr/7wLf2LW+SfPv+Pf/3d1XUf5tVv7I/90X7zn78/ +8Pt20v648ozP/oPn7z+9d9vrt/1fzrpj3V39eWH+8v39Oz9te/OH1xx8fXV9du7S343//o3//bu fvwb/c/9999e0r/92i3Lr/rU/Pu7q4suxgzNl/7t/PqDXPvd1dv7r3/4YnLm6Nr+KHr1/9znN/r6 8uqvX99v/Uq4/Mnfafs3+n7rl/n+Gd7j9sv/c3lx/9nth3dv+6N9dvv3bV/rK943/dL791u/4Mpv nvxVP/23Lz69/vbr8y/ctu949XbSUY+8E12zx6vvI99zepG/4//+8OPui5q8/3D35Yfry3cXl9tO hfx0y9nAfZ76w3ZLe9v3+fL8/eXv7i7/60OfhO2VzINfPfkb+m1f792Hmz9e3J//7XJ7/TL/5Mlf 7N3t5/dX9xcfOY7H+73nq/9ydb3DC6785snfkLbctm93d/n+w/X25zgu30YDPfLo7gcefbMWnw6z y7/M6uSHH/YH5v2JP8jVu20/x+23l3fn97d3W3+Q8YO9XmZX7z6iT+aTmq598rf5/PbD3cXlv96d f/v11cX2r7XDWz3jrnlze/Pt7fur+202zc/xAGxPfvTev/nt5VevPzl6e/v3Rkdv7+jt/dzeXjx6 exte5MC8va/uzrthf/2H26v3L8zf2zoYcZju3ta77+juHd29o7t3dPeO7t7R3XvB7l58ce7eDm90 KO7eiX8pDl/3gj67/Nvl9edfn7+9/e4FZL52+TQv1huSQ4bd25/tiHniV/ry+sNHrJWfwNjcV9/n /f3b317+7UqxL1s7B/OPns0m+NfzD+/fX52/+0w+4KHY0rust33fO1uvs7fbH1Zv9zpY8HZ71f72 78/wIrdfffX+8v6zp9Bpz7Tt/8hveNzwz7Lh3bL1yfLt5cWH6/O7f/n7t7fvLt9tv8DWf/jkb0mP 8McPH3nkw7MKrsmpIbjqxe317d0/f/e1+NNbGgrfX28f09arn/wNt0Ywvf9w99X5xeXnF+e7vNXK j55+7+269d7cvnt/f/4jtt744SH5Jidu6f/vZXjPJ2mHV9nR23x6v3mHd/nvrd/lv5/RBvnT7dW7 +zMNKT1HPPLyc92qZ6rTD8geepnJhB8VGdn3nMKOhtC+W69PZdcdQJJkX5TB+d3V/dc3l/fbp6wO SSnsvH/2XSE8TZLxyf2i+z+dX33MTj48f29ro+ubj7gW08vQpXv8Ih+J480vEvfZhftme0XwzXPo ge1fJGz/IuHQz87D8ZV3DxMfClLk95d3f72kmTwgI2jXA+glfouf7wGOkKEfq+TdETJ0AJChHd5p v4Oev6wakTe3t9ef3V1e/vfWOZj9hUalrVfgi0VGvb26Pt8+nXZIQYwXiPna+kUOxdXf/su83f7L PIcqcadb0zTcnb+9+rC9wsflz2cN3959+/Xt9e1fvz8g1+TlqrUXo8x+/lKpfX2hozI7KrOfZ2Ht +ZY/eTHA2y+3jiQfjPbardRlF/X1THv94BC3L7dmf+vz5DBr9rfGbx5r9tdf8Hlr9ndQe3t+uH65 vdF2KEfS1m90KEfSQbIo7PAZ9h4I9IK2+0cQCge43bd+o313oP+8dVrhzdfn795dXn9+eX15sUsA av2HT58L2jp792Nfcv2HT/6SWy/J97uV5KAW55nOod9evf/2+vzi8uby3f3vz789oMPo5rwPtXWG 9RC8ox3U3r4fSVuHdw7mSNqNC3GPjyS0Ulxev177o1v547ZvzH/a3s3D5c8Ilby+vfs91Meh6Lsd VuC+a4etoyQHox22fqN91w7b1+g+DfHKvuy+r3YCOn11dX29C5Dr+hm+9Pn1d+fff0Rrr+zE+/O7 nbaiXP/k73V3yQbtti92/vbt1f3V37Y3DscPniEI+27796KuYB8+jn2Y32z6yTPUML27PN8azN+9 povf377d/t3GD54+J7D1Jnv7sWqGOdn54Tm84K3Pufvb7b2t230+5766u73ZXpXzxU/+MtufxZN+ wO3/wI+/rYpY/dXTOy9b76UvqV/h9nlDufqZXJLzd1c3589GDXuwPHQvxR86qS8FDHPx4sAw27/R oWQej2CYPQn3vvyGhduT7R3hMJuCJc8Jh9lB8e358Xrx4uAw27/RoRxKBwmH2eEz7D0c5gVt9xcH h9n+jfY9u3CEw7wUOMzWLusRDnOEw/zsam/fj6QXB4fZ/o32/Uj6CAbmCIfZU323wwrcd+3w4uAw 27/RvmuHfYPD7HX+53DQPDss0F2VxzN9w0NkDdwBNXf8Cj/bV/j5aEQO4CP8fA/wTDc/fNLGT//t i98yZ88Xu4W9fqLw9r5Mw8vlLXqRFOzbB51fMk/OUaP9sEbLR4121GgHotG2XqtHjfZL1Gj/ctcF v2wT7ZKm4KjPDkSfHS20oz77qD77RRtoR312SPrsaJ8d9dkP6LM5qfPFbtn6F6bWtn75X1AO77ht ttk25Ze8bbZ++eO2+YVvm19W26M/Xf398vpP1+fff7FbaeA+wlvS8jptjWuTmf/zDtC26ReHpPnu Lm9uP0YIclhcL+61+8Qvr13q/7u87v990v/c/+8n/R9e/+y4xiOxzZHY5pdLbPP+W6K22fbtDonY xm3PxrH/zDZbnm6HTqBy9e7t5VdX7662T8R2tXN5fv/bHT7g9Iunh/P/wgli9sWGeoE9F7/codn4 oSD1d3mnfcfqHwMW+6sOPra3f1F5pX3nAthJKey50r64vfn29n03d/744SPq+CdQ3s+kE97gHQ9I IZzfXd1/fXN5v/2+OTzFsKP1s+9q4cdspUNSDy+Ou27ryO43H3n16WXo0j1+kY/keucXic8RMdn6 RbZXBt88hy7Y/kU+ArubXyQc+hl6OCmOH6X3jgWAuzzAMZ18TCd/7FVX0sm7kfrtYwTmmE7eNCsv L53M35kSyn75ZKdvfkwhH1PIxxTyzu/2cnujHFPIxxTyZhV5TCH/tI7BMYV8+/zhxmMK+ZhCPqaQ j1nJt1dfffVh+24mh6IKdnytfdcG319eX99+t+3bXF/99ev7/u8nF8SnuvWbPfzZ/obyZVl9vhOf 98pv9vfVdOG+uX3XPfN32++0td89fShm6xPrw91X3fXf7fOt/ugYdHvOoJtoo0/+end5+e6Tfhhe ftIdsau/3n7yt6vb68v7T+4u335ye3f+7q9bv/UxGneMxh2jccdo3DgvX1Kr4l3ssWNIbhs9eQzJ /dJDcq5uneo7/++rmw/3H2mQOG8hXP/kiytv/U6X1/0vO4V8pl88W7znt1fsnJyRPnwuRMxvxVE6 U518QEv+JYWd3Pbe4reXF92+uvuXv3/bLbkdPOL1Hz75W+IRngLx/+Qew0dCZi8gHPW0EY0nz3fv ugN3jkmt//AYt3nOuI1GaSRuo0EcDt8c4zYPdfAxbnOM2xzjNse4zTFuc4zbHOM2P/Weeilp+WMQ 6hiE+lHP8Ll6RgcYhXrJ/BkvrEz+R4Sf9j1u+JQRtWfST0cOjX1TDruCCfdeMbzILhTXV/d/Or/6 WHjy8CLt2xMcHLkz9u1F9pw7Y/sX+SVxZxzPzue2Qff9/Nz1qDmUo/PIO3U8O/fGmtnzs/PIO/Xj 5npfjt2ddd6Rc2qXB3immx85pw6Lc+rzr8/f3n73c/QvOhxNdGQXOAhbcmtStGNF/hEa/Q+8y9ZN Qt9+vz1+5vu9fpGPnHHzi/z9GV7k9quv3l/e05a4u3y7k54+tNzTH/lNfxkOwI//qi/RE9iXr/I0 qakD+CBH12zvXDMXl19tuyS/u3q7A9pLr376IFbY/o2+vvw4dG96JVz+5O904tLW77S9BfUcBtQv MhRw+NzTuyzA7S3fvx+DGsegxk/+TvkY1NhbU/glBTXqSwlqbP8ix6DGMahxDGocgxrHoMYxqLHH QY1fmJN5f74D0PIlZpu/uju/uD+//sPt1fYVDfLjLb8x7vTUCLnTrelavjx/f/m7u8v/+nD57mJ7 c/PBr54+Vrc1BvDdh5s/9m/8tx2YOeafPPmbvbv9/P7q/uIj4dLZF6Wr/3J1vcMLrvzmyd/w4udD mT31m2wdnzuUEMj2b7RzOfrhnAovj+zoSPkj03Ck/LE3O1L+/Bxv9pIYf5bTrfvu3N9ubxHf7rc9 /NXd7c326pwvfvrky/Y2+5GKaZvza6JiepbA0fbURT9L0OgvH+6+/HDdF9MhxRGP3CsHUyK6g1dx IHHeXerDjqHWzRGcF4cf2+GNDgU/tv0bHdFj+xPYH+f5Fx+ptz0ABNn2S/DF4sfuZ/vsBSUplhee pdgaH3NMUqy/4PMmKWjLvVQM0NHduz26e3uyd44O39HhW3/do8N3dPiODt+Pcvi2NqmPDt/+Onwv F5e2NQ/CYXp8W7/e0eM7enxHj+/o8R09vqPH92I9vvTiPL4d3uhQPL4Td/T5DtHn+1+3t2//ene+ /Sm5tw7fLivwxbp8L7INyUtkidiJiWDPe/Zt7a4eGS+OjBdHGs8jjecB6elbMF08Vznbz6LM/nH+ jqfG/u7SLvpQ1tZOL7XvRsBX192TkLbe//zl9fnFN5+8FtHtt+cXV/ff//MOUfv3999fb5+F0Kuf bTP9jl7zgPbSy4yI/iM0PfseGN1NUey5FffybYb3TLv55mfV7gcQzt4XffeSXKAd++Yeyo7ZtR3w nttC3329Q6XptTasP9lCy08v9vBnT5/F2G0Rfn5xvoNNt/Kb/X01Xbdvbt+9vz//WPPK2Vl/+Lsn f8WtAV7vP9x9dX5xudvnW/3RIQXQeVv9fPQ1T05Gv/V3Pv/vq5sPOyRP7fonf6m8NWvX5XX/y07B 5ukXz2Zj/faKlcKZJn6fAzXQn4EV1JkeMkdr71msve356dAT+l/+/u3tu8sdTqL1Hz69u7R7P+tD sWt/EYbg05oS+2oKYhXvbAuu//Dg7KWjuXQ0l37R5tLnuocP0F56mdmAF4mP/hGG0r5buE9p+x1D 5tszvd5d3X99c7kDr/shKYddo817rxheJOrz+ur+T+dXHzOkD88n3Nqj+OYjV04vQw== lz59GebWL/IR4Mf8InGvX2R7RfDNc+iB7V/kI4Re84uE49l5PDv/MRt038/PXY+a49H5PEfn9vrt eHTumzGz50fn9i/ySzo6DycOfezSuI+20M9+sB7At/j5HuCAFsJLpSJ68eSzxxZ5h8tF9KOSIPvt 2fxlZw7rQ0sXHCTJ0s15H2prooxDUOy7L7R93zr/2n/6/uPQm8OLCrjXi/7/TX8yybavzX/aXsXj 8md09K5v736PDXgoGuMFnk0vuaTtSPGxv1vpSYIeT03mtLVbte9cHycvhuzjj09fuPtMiuDg6DFe Jojvxy+4/U857myN77vGpnwDfaq/vGAC5EOEI/yY73JIa23rWs1DMbXd9l2mj8b2k2+nF6m3//Or y7vfXd3tQ0x1X77z/fmX23/jQwho+tdbZ3L43f9jtzDYym+ej4rrw7uLPx+QNnlxq+y0vF5e/zLW 2b8e19kzrjP3S1Fnnz0XxISdHaIE+Mvd+bv3X23RRWJ/1vvLjIf8yDKffQ+F/BgL9BCsavlce2JX H+Mh+mUYOffp9fUefJN9mZIft1iPWM1dHuCZbr5T+6dfffpvbvniX969tTZQJEok+eIPt+/+1Idg opkTEX92+derd/M/vPrDtzoG/9Pn3998eXv96tef3p1/efn+vz5cvj553WU3l/1ZLs6v/+nV8vrT /t9/fvfqw6v/8aG/52/73/74ajmNoXmXXy+nPrhQQv9D7f8tJSb3+ptXA9zxn9/3v/zf/Q//p4u+ ex1f//71//v/La/f0qB/fnVSyhJOW3H+dU2LO03Zp9c3LI6nLmQVk1Rkwfs6XSrC6FoUYeyPdME/ b6fLUvqlsdG/L54udfl0cUvowppPa3/oLvPtNMXKF/ZXWJYqvw/+lAYksTstqVW6NqR+/1xISP9c IgvraV5y1Du1fqc3PEA+bVXGLae1Lk0H6NfzC/hT1/+owuhKImE6TanqG6yK9WXpCUJkYTlN3qXX //vVitgFmg25WTnNjaYguXoac+WbRXfa2tJfof/4tMT+tHyzSPPBA/h+2yxPm/p9XWNhPnUx8hPk 0OeQP5cPp30NZHldFsdZvFHIT5v70+bCz+BPE32lLiyur6QW6GnbaYuJP07pD+MLDeBSfwLcrPrT sCQawJVTVzM/WG2nwckc9OcOib94/yS5RZ6DRb4zv24X93XnIHavIeO3Jdn4fXH2e9+f7w1+73kS Hlzra1obNKSH9+/L7NS5XPCsjl629i/qfEorb1Vd7OvYxwczUPsXda1/pXm2qu/XZvmINq+1f7q+ KdL0DfgJQt91fX+tfNsa+88S77mxCmostNcTVkx/L36CB2LeYBuE9MH7Q/ZZ8G1lJdbUn7bJt7U1 OwmxvvlmJHbBT3vhjMWhf13XVrZTv/VpjCGubLx+wWn1/TOtblIa1y005dOGrimfphrTytavqfWx 3EM10XVIf3T65kOj9Fv2RUtPNameWhO2zaSlSOqW3FYUGgn7Qkuz5iNZTC1NF+L3WZYMifXC4rMT SQi4d9eSWWQuZVnEPGYWFdm3Tuz76czESxOxr8Xh/nGJKuybD8KleRG6GvBS/amXxgP0FVdreS0T 5XPKNFHxtG8d/iqZDgz+KrWcNlo4PED/AC2Rjur75bS6xrPav3X/FFk+gMtV1mb/Kv0ryfdbaB/J 2vS6E2Op9gX67nCp0aiZVmnIvOf6AF37kbBf2a/R/RlOu0KpIm5N9zIpek8367pqaaK8TUHEEmUA URC03kpevZa+VvIPRi39/EnFPXgC0pG+uLTytKSly+LzynuV0Afoa/vBHNCR0Dd5WpkvOtViaWll ZukEDIkW4cpXoMPS5bD6xUrfldUvdeXb0gm8eHmCaR3wwc5HzbRmxmk/rS4WZh+nlfhGB1CFinV7 BrEtZ1niJKtL8mMjbDArLl591Y2O374SpSifhzSlr33Obljcz6ucaDv6BbvZ0adi1dO1clM11XVx dY5VdaSzTNVJn7K0hChitzheYvSzhZVU13OpP5foxK4gaw58MvQjeVmiKms9g5Z6WmTh928WXKui +/on0yXaT/dudunk9CNO9G9/gSofvZISYVkfqWbeI3TuBt0jXSPyg/OlWQ+AxBOqg9YimyyRFiqs pGKf06hHEItrnMRnm8XX6+K64HZlEWXVP0iYTguRuv7qSWax7/R+UZDPsOTM0xXJQElOvpdbmk5N XFSB05FX6SXlwIueT3JPB73qhLV1QIuETJ9+nsTCe2LpXyfIAildYflWdbcvle2/0pUYP1nsfwrF ya7u57OrXoR9bTfZEn0nybohtdAP2aiGS3R8CHUlWb3nTdn3sh5CJZPaSaZXumpwogH6LnCwfGJk feloq7Os9u2ZWbX2jdBnUh+AlLuLoixi/x++tnRtl/nbBFMVfX/3j8ffhjSU1z3Zxd0MqiLu7570 2uD44zqajIABltrU9GH9IU/Qnzt53SPdd5ApoD+KgUDnZGC1UroVFMT28n0Omz5Bf/FWxVBcTrPa 0P0rhSRrtML26pPRv22TjRNDUb3Wxf3kCvK2oc+PXttCwcLv6+uBsB/ppA8wgIhj6weV05vRMkmq GKuO2h+1lqyWRFejqtv7F/WOD9NaZUeTsD+MD3oW8lFJwr4MfYsijKl/eBmAzhQ2Rro4u8ZPkJvq Dhq1iAWfScdmHJqlT6EcLlXNBl4FTc6Rfu1SxePpg2a7f2JLnawWsgrk/l1czZjpakyv7ScDbJFF PCYSBt62JDT7ue+eXH2Wb+D9IqYHifskef00Oi+JjNqmssVVFbraVNg1ACY2wQVY4D6ExRexD4vo U/5tZtu/C3Ncss1pX1Z6WsGk75u3a3wvX9U8lf6pZb/2r5pDKTaAi/AY+/nU1KshewYfIGBSonNO hEvxuq76Cuj7jFdAt0rakvVpPZmgMqpqnK4Ba416CEd7ANIjbJ/0dcnrQ4R9E6o1F30rK0L6KtgX k9CLyhNh9yOrqO3usvjXuBE80+n+fVWxgUV70CedrKJGJukLWBz8nZru7EBvilUhphCJndMn6B9Y Pbi+gqAa+rKKNK0k7A4DVAOtRlEMbLfzour2U17koOzWieff565ddVH1k1y91VRIH+kEsJfCr0Vi X9wkJmE39hZ24LpqyBGeLR2qanT1U795r1ZbzKIauh5q2akfTk6SfEPndV9EsrSCaoYsBkTpTlV3 hHi3JzHwNh5QcnKRXdAPsvLg5CKT2Ds+pcYgdH52R8Wv3I58uK5JHzwZ/b49fInaTU+3PHjdbn70 8ZeKqdGPS2aMX8I8jWewxHJz+BK86Nk2CuOTJZhRiR1W/rpJVJGIOZ6Bjy7Cfi8sjypBErLOugGQ sJJcUf+6OwBtZc1Vtt4gtPVZyVDLbN7RWpaDutJti28rq56EGviYdwh5G7ml1d1EwhRcWdl3s9B2 6BBOe1luxZ7G2PWVHjtkaAjya2WyouigSZmwKSse0NA6NIF90IcaisQ5BreizchA9rXlFb1HQrHM REdGdZddkyN/1qc0avct24rmpUf1mS2zWUvzG/gSVzQ6C50Y//i7D6KIptOhsqmeyspJQsJUYfvI kUOyIgsFp9MbfXs+rMdZdqbivhTcyrnHwgh/XU9IFhZY13aadn+qf6Jx8IrRTQ7IwvbbOKJJ6Kb5 1+OcZrV47+eTnz5ACG3VRKAHCMtSH5gTtDH6co8rpke3hSfdoEYKLbaUFl1A/FSyMKsYs2r8eJ6C 7ir2JZlhJnm3IlwxqWaxmV8kTDHh04hJRbdyKdQHRh1tjaWkMtt/9LASCJoMRdoZvqX2wKis7FpJ nM4MUIrS5cLraDJV+8uE6NbM2i7u2qM+MIETXL/ZWE7d9mHlNBvWlWI9iU+vYYRXdoxbWTHX6col xvbAtKen7aourngB5NrlnFbdhf6odM0D14J/7/h7DTekdj2VfVh1WEgPBkdzuOLc0DKMno+I4QhV 3xV48Cse04YjSr2u/ripiNPSJ4l+dqNT42PWEymoYUS6omVVm6nK1Fq0dqE4IzwGUmwhxZVLaVHX mB+M2Tdd4rfF/eXb0qtnnfBcUlUHrSwSHunTXVxbeQCeb/Jo3+ji6EdEenAtxQVYGc+jrs2ATk0M anSaq8sOaT+Bm5dlZ24xBf6LaCQ6B/rGWhWqry1RotK3mwRWJyeechoIwzpsaLpX93MTIgaF5zHS GS/G8BRdIJsHOg2BCDJZloSMjkYsyLpyi+hftunVGO0GWnG1IhAiDk7XB5k/44iYkMmXApv4iK68 UQ+lxqJbt+s2r6Yka8IRtfmPV2LPx1DTSoSn5P4CmZeXhYLoofKyOEQLgvrUqZ+7S12NLPTzoz9A 8isxiA0fkb7u//h3ZNYkltbVm557Cy0FZMNktXGkm3wOEfYD203XirDVrDmy5uHyka4pCIDzkjnh EF/37rIo/j4FPGpYxDRhHc/ulKSjLNLdV74v4pxRkLFJqDxY7IOswn65LAlWhVhqklygJRGaZJNC n+ZF1kSfXM3k9FFbty1lqQ7/6IFYXpeEy6Lm10LGAxJiKu7Lomn4tK9qz8ETSkM0CrXSN6GcR8VH TdDnEUYJpUJ4Y+iXFmOhm63dGha/mdYdf7H+pdui0XUWc1jWxBuFSIi1IHGscLpQ1kNWNp+EvFhi auo4tcahT0exZNyrelqiuoKxAitnLDhO0h87it/Sv4jP3qtljDwCi4tT03hJ4mSxUI5KtzJAtQEi 8mEkrXn90ob9Og0aROHMD8BHbY0ODxubGgC5SajIXosNttzqgykge6er0DDPFkX8c5BvaNNKDkf/ 9G36BBJOpei9W/20FE51HllRXQQUT10W3mC8YLoNKw7SqlgSHOtCiXBS/nIJKwuRclH9qE4rS3YS Ynkjb5X64pi2wpmKfeLQ2NhNlDhZnIThbd9xoLdxJmHeo3y74trKfq6kopPY57bzKXXD9siqlqA0 T1MjxDQKJcQkYjfpHkoe6baZ9RRntLqeXNFpJOw3RNpctF9fbv2b5jhdKQN0Q0wWDYnVkuvCkVKr MZnQzHG2u9/oADzR7I7U1JX0GcS+BhWTFa3CBSk0zo3K07Yihi/5e7BxK6Uoi8aSuunM9hWZWhIw qJQ9FsM3a0iBTe9IUQJJi3UF6thuo4BvwKJxYuC1RUJqEtqX+Ax9sESbSVZot+gb240UQtXPQEeW l/RTP/xigU/bLWdLVGV9AIJfRNbguVk0jFI+mUOUhfJ+gokwLUFWHw/wRg2p0FJavZY+g18ejNqX jOTCV56AFGUNHPkaT8vxkbLyVmSVdDOsPZgBPm2aZCZttuhg615rnKeVUmJ9DYUHX4DOyyLu6/ha ZaFIe139rnyM1xYfrAEW82EzrZdx5E8ri4W+1WkVvtEBVKdizZ5BbEtZ1zejZTRDZDthg30xp8WK fh9SV4XWCtJi3bBj3epsU3drP2U5MqqlU/sEhVI1uM+5d3jOS+H928XZqYfPJrpXEw== rf9I0mLdzwmCrKAoqewoXyyS38he4HsRQqcWjbGUpVharHGiWsJMqob7C0T57tXcy0hpz6iWa9UQ Iu2d7uvqx3B6DnRtWVvTQRXcQkq8u4xBPVEyEd+8MnGdxGebxdfrYkkJk5DVLIMgOB2KU0PFfWq6 cve615duWskZmSh+T6+WNQ1Ih2FG9CY61eNkpwYFRhAOpHmFfHgX2uuN62CkxbqZEMSRIS8YWbGa s+721MQ47VZ14gcjb3BKiPCxxAogkpJEVkqWTSyUwm7IavHRyKN2HYmkkp5FlB0iM9UUi6jR0vpb iP1BA0g8nBAJVYKpfT9LGJG2cN/26uKJdq+iMJosG86hxaAuOdRFP8IAM1rE4wIiCGiWpes+cTg4 GpI0OJkoSifCnHAlK5ELdVIRE4+SeTuRfKEaCv249KLvChlD3omhwFmlNxq/7/a12mAGiurL2csi bWaDUQYsIjo55QY9qTpNytQmuYZKSKKIpa/x+0noCJ5kvxcpxbGiL7hXV9NOzv6gg1ICIfomxkNr 1dJitEIQxirqsnFMku0Jy+B046ZlDWM1C9TTmZIsYhU8kjW+QLt7r+F/UqkRpyZS6iR2DdYPYjhd yL4u6w6OuckTdHWrMT82DJEXKxr187isIPDQT4aowu5ya+DCLGjO88jU9z0eNR9GEECHLxJ1Y3Fg QPOX1SVkyborrcKMNdWlAloiqeVOSNuJ1xjgmtPP+WCTiGkM9j6akKHgkJr1hVLQYt7E2VmJslmb nxNylMqvmipLWQJghbL6wWyWDGETZEpbOEZzoRkh55qmzyJyUomS9hpbNnXTfYVk+dfs8AbNhqVY V8KmiDmrKdeifBYT0mfxOajfPInZAdZLg4JN1MPQO9WogYyVB0D2qFoIsKgtzypg5Dn1OHOaBsC6 ACjQEwxDN0VRJ46WVcGm6N6eunDZuREIWWJRJ4yPD0mK0VpeNJXB4XXxTp2urEzpLYna9H3X4FM0 wyexGHoBvnTiGJJuCwbsICtWG47fPj1NrbYlcL6b8haaLo5esbz0FXPIxdJiFPmVTezEfqABOMLG obIkLuP6ATWyYgoUmw4uxolVPqPGEJQUK5IzHzcjR86pFpgejAyL9PAlKCuWi2Dl7HUpK5ZatanR bU9GTBHHG9N4poZYVORBxrpn02ixb6ZeECVaPDx3nwGh4/wL3w6fXcywYl5+6la15cW659uwnBLS QjHywWHrjlzvXCCzJUoh9SQJP17N8r4UI458co11z+kDCX/Me4TEfcOt7ifOa7Xm5o03y6Y9OsTT fpZ7SU7Cdn6V54aWIP8WmaG+bP2KRqFpiTHWFd1T2ciSUYea4hSYADqGRiNhFVjd0H1kNQOgRQnc itRU9wYEVzR0Kg3QnYGwon05XxnSQ03Nn6Yhe+AtLTZAFqr9+fdLcasHBUlbCG7lTKElgFSLnT4k DA7355MKFn43A6dDDamxbprBA/G2CvvcNhyS/PcA/L6dpZTrahpvrAIqPOHEcCiIN+oJTVeWMfsG kPML8pLj5Gc031JWbQR+glwBQ4U9QQsgl1hXbA9Ki0E7wEihta5gL0Jg0lNZTqr5CtNHVgWFcXJM MJJSXRHO9tQsNdOL81/O46OIPUVChaPPBh2nm2NwK8YfPayEgyYzsbJDwR7ebFJSVqzIxhzmp2Rj ils1VCnFt7Q1o5a2XjWcPAzgbI7fZCrnbv+4h2Z1pX3Oqc3JBK/swxa3Yqxz/ozQCquGPQcWkw+r TgDjUdn+nNwF+h5OfJPJtaABAMQzN6QuwB9NDgvNbK0c956dG9rbAiCdHCFKi3FAc3aZ1g8ppMWa IPQZZO5iTpYWqw6bwYADBPaNupMXAkyvBG0XijeGAVKOCyxJXGv4vGlU8q8YoT+eQD5vf/kWvcw5 J2/Ev1HkMs94SitPwDPesgZk+pz3v8QH19Y+e+7hqGtzgMQYB27b8HXZJY391ZrzK24xx/9FHWG9 rwjhbL/RDFgoEmGd3Hgu9tF4rMeepoRHP7U02NMXDgA+fUvG1fAC5cWGVgPOMNEJi42uMQsysDJn USS8ERABC4TocwiFRPFnVJfNQRMG6Um2SuMrYg8GBZsmRj4UsV1pnkuawjb/odZ7tzdQtqFJlJwp QOJWgkFsOeZqAYPcLDMm2cwpuNAdJIKp5ZUwxPpX1MTYv7/61Re/+fTufqXA8ldffNL/e9Ve//qf Xv/n/5oq4qSWbUN12/91S60k51o2LWLrRmqlIrZuRVPhWtddi6No47JTDRsr4Mw6kWBO2RXdodXK YQrjkERLFAGnUJGOBrgJgRG9JqEsC0pHWLdKo8w1Ys4ya1EmNYtDymFcPgO7JdbNjoQBUj+MF3qA kA315e0J4mJYib72A7sJkSIGACyRvSSJqahRfpxrbIUFMlMlK7I+A/QFN368X3OZYFeBU8njZ599 enHx4ebPt/dGeaVfWW0Wn7RaimH1NypOHLNJQHrIi/StpZYzQCOe4TZRhOx5YXaixxZT7VM9MLuM PSuimT1SmnQ+1gDwWRd3pe51g2j0jgquWkMVVhSfgP4YsgLNOXdtZnqJvBgCgdNgdnl2+skqBKBs bQp+sukl1Zr79pexyaO6UalUhbA/qfgfstAa4y7JOJEFvViV4FIk3GHWjyw9AvfkCPSNWxhjSvZA UbiWR5zacQmeLb0cqs5tFRADDdoa8PqaxiEPqWTdO4XQSxdqOTSJZlHyr4+np0g/gVFkWMSdXnv/ n2hqyRkq5LuTCVKrpxrZbmVTJJ0cHtI4Xcvox+WzhgFgXpUHJUITggQcyLxWcyJEgBgS4f2udSXV WtVUIwUq0qTlAokxO/1zQNykrLJrCwa/QKzlFEGLFa9t+8mkO9nv1/qBJJnCCAf6GCLuzk7xioag QjeM4RfGM7omJ4yI+2kUi8I8yG24VrXZ/SXFr/DGhjgm3pn0WnTIiJj8Ca9iTirhas2FOooJZH0Z OmElIEo7mZYVxP0wjCJebFYXgrUGNZbZX7xWh7OrCz2E2YS6xpJfmgZbx/yRuDrVKMuY1n7YROyl nPDy/f7A1hOKtf/JrtYUCOEzmhvfZmXpXP80a9e9/vTbV1zxSn7xQklXWcnd1qDb0IkZKJ/9DdZk 9Rqm1gJuwXo2ReYs6pPS6Z6yTqjWxbFy5Awcr3Q7fDyD23UD8JkmB51UbLL7otEZTmIClMC+PvQ7 F37xEvAag/B21PbHCrmiDsj7qJuKw70yQNbyCV5aruDaJS2Kq0DtLh3FqtjKFIah81eybRQiUB+U XsEHzZxVPWD6FKUGaEpGNtw7Ta7StkHimzJvPui9YvEQrnyCn0yHSYk/LQQq8ZePTkNU8iy/US+/ NuxLjjzewPmvrkxnpgY6Moqsc8bp7PVCKqb2OJ3Jkgx6qWYOaO6w2SlYuQDnoUkOimMYpIMnv2X5 UPAdvVdgGh/ZSVCpBPES64cOZDKK4bkFPXTJwV4QQdBNTjaTVreuT8FPNv9bbkFiQcheVwoZdTcq RVYKeFIUHXb/xlcHoUsNvlKD50wOd7N3kp1G6DJR2PRRFUzST2Dxf0jIEQHEL8JSdafBx2UgrFV6 ab6S4PSt6BMsBImFCdFiVHAjpyF1gJYjbK6qsm7C6ctzOYiZIMpfsIhYAyjCK8EQ6yjCothZFrYM VBJZi1FBgE0LQhcqSOJEHSGNtPT+/2fvSxjrKI6tvz/g/3BJQmIHbE93z/QCAYKFDSQCO9isWYgs XduKtUWLE79f/00tp7rnLrKQgJDlPQJ23Z6a3qaXqlOnlrr/R/z+CCQsBBi09tCBcf8ahtWAUnqQ 7WwvJwikYuDHZrrkELaaEZxO+GsJuqcLpIZc0l6lV8UBJ9Yuq02MPrRMswrjnzkEkUeqk5WWdmtF CIwDqdHlXcTpmI5lAgi+qaBsr5dCWEU7NZDK6hmi4aSnXfBjf3808/m6P+4INF69LoLBGBX4ghRx wpfvhbBmuq1QxYOIxpGNzQpUlKXBi62NNwWJs/LZprUHJpvPbjRY2EB68cgQzAWxFUX9MUMgO9aA +Bp1NROZCO2L23omjIVfRh4M2BCDnjpIK9smVvbAj7kHEYg76NGVYcjofh8F3JmB8pZ7Ix+lqPsV aU/BQZ3QZETxqGxjbxOvnCdoC2z4452YlSbBi4uwT3z/9YQ275wNoHAGUKdkxJwwriBI9w0wi1Nd gvYpg/DMMi9wxRCMC4FmlSxsFBweNORkqQu+v/7H9aVXK0lPg8ACr4Q/ZATqdaowTjBkNcVRIPEg a2uW8J49nZniyLDSezg1ONeKN1WJZ08d3SrYwLmnbkxE0bWll2uySSCnW1kuXRQ748ebOc0hsBiR 2X48eTxXreLy5MfJmL0/FQ/jYY6CKeDkGPsnrRdDCRoSAi9f1JCgF6EVr+QayymcAoszLUGh5/ii hnPJibnq+XJFKDLFzCRsRBJxKHZzUDG/MQ9aPwpsdEosM56ZgGPRoxyDa8cO/0Lb4qLsBTW2k0OO nbabLypfawMlQHu5O/QS2cu5GeLkBM0bBOd3Tp+uaLgMty0ZY6eRV6b9Ay8eMtypwCUzZHF+yHAP iKoasnjaZKQsMGugg0CW6ybH9CavYj4V7KkJVS64PcFwycOMS54YnUlcvwk+vjIAhQC+ZB7Zg52K g01JN/tt99Q6qCH+VMHearLUHLoTGneX/D+sm16smwrrYLRWkL16X1ulVneKs1C3XiOlQHICe4h4 3Pz5vLdOPNGRdb21F25q5cdZEhcLm3SimVgD+Aa9TtzqIGCxNqV9YbZIx0lhk040UyxjDueIWx3M f+CWXkgf2LBUuyqdai56AlonbnSwp6q4sPBCttnFISwWNmmruR7l14knOjJAc9MXFl1CpoVNOtHM R8t0jrjVQaCEyGvW5IV06hRU8KSwSek7IGDwguY14ujF7LJY69XiiZLaTWvEUyV1CFaLWyXNmK8R t0ra+bRaPFViE3iNeKKk+ThWiydK6te4RjxR0nzpq8UTJXVpWSOeKqnL1mrxRMm4j4kDcJ14skAt LJ6bFVPdTCwKqQi2KUNKNhzdfdvptkYsOhanLKRPFqZb88ZGOlFdJ+EacfPGJc2b1UGtk7C+sZU2 qtupuUZc37isGW+sU7N9Y5W2qpsJu0bcvnFRs76xmbDNGxtpq7qZxmvEzRuXNOsbm2ncvLGRTlTX yb1G3LxxSfOmeFvdxc+bE+foTcZfihOHolkZ77WvM7fIqEK8ORUXOmUh7LQqWSOuSp5c+FpCVEyK HFCuD6kZwY4m4s2puFCgWcIhxpSsEVclfNbik/v0wCXNDsoHFMV5vz8Vj1OBCa8wSgKxXCeGks3V uusi1Fa/E7sfZq+Qapl4c0H8nfqgKpFv1INRJys0fX9B3HQ8feklOH+OWJVsrtZdlyItP2lpI27r XtWsE7f9sqy7ttTzdWXaUiJyTBI33ta9EU9aWpWsES+01H6YtrSK2ybVl64TT1q6pA== G3sLIyTaDttfEDdq2o9pjbipywrdeGn9VJvubcq33duKV3/Y68TT7q0fQbtstOJ2TJuFYI24HdNl 3d99AZaVIEaOVWJEOlDN7Fnh2DmI5bgwbulD1FWUI5ekihR74+OSeEl3Y5C4qE+CjLl8L8+EbvDe 6icACcZ3wamFUFvqEo6tlyor30yOhG9BOBkZ44UQKZLXG46Fri/K7dygLQlPph2NKDoSl0FYW7NE K4i1WRgKaQhTFHogwikHoUaJ4hsRBRSX4LQGgIaSZbpDDQrs3cTgIVxv4NmgeFwJ4xyv+wOYRsQr 0nMgUgKUT3xljGgkAIBg5rJSClObgLwv41mmk7hbMrd5xdER2opkvolyKUV92oS5M/QkgBU8C+hc u3L8tq/du5hLIivZBL3aFdfXjc5hI2dyQJ2XQbCFxLLSA73dD0mnQ4zadnH+FHw4avikTzgG7ZCg OGVyXhg0cayPUjgxRCUo16nrPFwKGu5K4EflpiUoupC1cmyAMzzq+LlqBZLy4I7CcRiw4iiLMPMT DWBpIbaLDT1YZ2bYZLHGWBCXiUSL0pRI0QhOMoa0MmsUolFwinMtoUNUvdKyZm8EAFSydIC+9h6Y XAIeCsq0A30h+2p0ZLw42FeOIo2/rBk5OB2dEB2OpkEJA7jLBqUQ5GbqJALdInHBFCH+JfwswnsT 2QBls+8kPkAU5OT4xlWsx0gr+zUo6pc9toiWEcs6iY1EsVePIfWD9k1iH4dS0DA4f1tXvd6z9ZmI 77SuxOyTNMBYPZYs9HINTE20EIslDjEKOEfepeEJaYDPmkp2JaswRsTQ0cncid2DeBDwLjEZUwVA z0kckoUXJiKZLH1tgJc1g2LsFODEAVNRv3hGaMmhelztVBjGr1sVkE1HPpBKXEwRhyEoXhoBU8wo NOi4GMCVaxMHqBXYFQVnCc12dgKMEaFw8PHy5AZUIKkvl3eH4hCcFXLymETShQSS9h4fCCFRWQEt LQOYT8FEn3sjR+pBjkmdIQhdWiLA5pLgdObvS+PJqVeibyc8+po5ziCU5fFiu6OwgCb9kBnfgI8o RqcBqjaFKOzb6+fZ+w6oXcHM8lBVGklCsESdAgjjJAUcH8hR8hhBulZkDaaNvkacKVkR3btawk2v iwZ/sFpy6PVrGUqqH4GEmBgJkgiFGlnQ9UMVCnVuFGYyKBhkI028J4P6pM8yB3vQW9HnarIaZU9T mwmi6XlA/+jaJEda/jmpDIbb1HDlkJhBSry4gPUzAs9Na5OQEvLEllAvJqAtvX1EfVd0dbEvPtuS kcGAzMZ6tdlmWYw3dBJWhqwQe8T9Kp927kBjlZJRpVP0a9dbD+TCDKO0c/s8fF8fkXY3H0iEKIm2 Btfp92KRo/QuWYhzL/x/ujZkh81T8ByJyUxx8NNY83tahZw7rVkhAOk+xJ3XeyK4tGipSL0evaKG DNBXOUgnpCZKmfhBkkb1eC/EPnQY0EZEwhJlFerY8EHLyHZozD04eUMBnZjyvfOfNKals40n05kP GzBFyMreY8hYMjupO5SPGxkcY0Iqx0tEPQJ4BQMzlyfKUjiWiNAqzmjRoVzRM1DNidGyWBAzy9Dr soPJUYhgyus0KpXcfrDp3RvRbLEI+twb022JCqvsZQGuRxhdTY3AnYZFCD+yl7OmDGsuQd+vuJ4L HUBplvRF7E5ejn+YPBrjk3ujxKATM5MXcdcrvyot/tGuaHQ63Nb7suDP+KAeMxhMJOcCT2EBebCw w6sYEIDZo4zMxHuiiyORjEg8fE6KiuPgHNdpwRwVE0PzpN4UlAqDw3N0FeiNWotKShIEWgO6ZHOn 19N2MOZbphHGYRksckJ0YAdYDhq6Z37EcW93BA8nwKb+oaNNjra7bjwvxaGavLzXaWHOVbFWYZdj sZq5HY7BvdItkTBil2bOStwEQo9blEaWkdBzEIKsOj4vCdl6CHBYFSsUnF/mCxaXEKBArd4QQkGS E9i0bLVi8SevQuFAoKkQQeLEzK2YNig7CpXgotFKAEgXy2INJKbOLZWNqfhpuybC2gcTMUJJHLMP oWcRDNspTSoLQ9OEoWCZN+rWTmnyRFicCWNphKiBetOnZUvMOBmlYUnmiC0Rz0McjIGYlPqsl1n+ dtEsm/gevMbcBVk3uiZOOeoeEYTQcVEYK6tsK+4p9lL7JcDsPR5g0KwQcKFjIRRoMOK0rOux8obQ Qdglu0qV3C/NoyBJDG42kEox6xRQDQtLhAkxkwfb7JuyQaj9+PppWqvQrk1TMcjT6FsKWLzBjUXC 0mNo6rWcCEFcwSgUe1ketLagdm7WExWiBhI0MylLZp6Cu7acmlsh4bC7Clas4gD206p1skotrGjb rfGOF0cLJxtvMsSSS4Gf4pqwVRE9TozfXbFVsYo7ZaimQXOY4m0gjC6VKsRc0jNmU5ajbEOaap0I uQY2GU3cK2lvo5VgKb1fqIEKbVV0+E6bsrVd0LrcB9uLvpMLbjJkKun8oIsL788w+nepT41YhM57 bYwi8oTEbNDRb3hbKWwathbQapVxpnDQFy+wmiqtEepRC7aWKg5K7VWK0mz0nI1Dwj0p3CqAera3 hCFkBOq6YanseKRWBWrwYmHCgYX5mtGE5LCjNWWV/6ZqZf5fv/B+Eio527SkxBo0rZoKrQcWxMr4 3bFlG12IIPgar9/LgWcDNSjYeTRolxV0AdY9zfBCQte5Roga6G1yWjYmY3JTBOtEONQ4/lZscfgd uNh5P3LWMQPY/BzdxjasDzCNNM6ahH3X6Zzt+rAgC3JFRAWq2FZH2jYytiNnzZJ4ExOayTfA9K9l eRLoINiizdNFDeZB7gaLsyhQcq8eM67DJRPkVMRMH3FrYyFqINFYC2UlOoG11kDvKmTjPhRUcclm NxUsP/dh8ibUDZlTSCZrguvxiTvwFBZk0uD7ScLnVVeTDtEgbDf1WE2sLMWDYzXxw5KIOTLxeBXz TX1RZ7NCLaxm33mDaftbz1X7S2IFDvOQecxvjXjlwbVlkoUYhvE9aamsUA4vaK1CO/BNxZo2cKoV FIqTGrAQCmptm7K1XY3WhT64/AbDBraMjzUWw5vU8wFSvhTEbLFQTWXF2AB4D074rhyswDynOpRV XApbQIewJAzmy2mlloeSOMbtVF8Sng9qTWlNZURN06d+qaywdrDWDKXwBfRC7oYGpBjdYtFiK5vp 9HSxLEvv9+2NrZbFLaxpVSusHdBKYTYoTNKIDoydCQP2kZoyhsRmqNJgChYO2Ek0j5sI0QINwRZx PcY0ZeuZrcgVZipMhEqHgioeQJPslR2XbxVwEyHi1lwpdqX3uMIomxinC8CtZBytsCx0odQ+NDGM IjQw2QwoQ4dmwYquQkwiiVGYlHVmO/LV0ODME+Hl7LQ4izwubDwLNcONhz+W52snNxgVogZBr5GT snC+e7PkN0LJboPnq9SrdZiEGReYxtTie1xgmCEZLVDqQBIrTxwJAy4wAYnd6lKiQqlBBy9XW7az lF4B94+pkMMaoaCKwbfZaJ0sUAuL2SX2l9rhdCQJvS2IVaynf7ZO2R1dT/88uhEXGBZiIDSeuS1L PsKQFrS2Qq4BJnMVg7e90apHgmkNVIga9NXQUMvWdjVaF/rg0vsLMVSZ55QJevZVHMyxzGIVKmCj MtPXHIIkhJWMy3ZO7eKd8i8xHZac6aPxZE6EHhaiqRj+xFzsTB/NuE+4F2E2gxAK0tANS2WFhoFR FS6jWnCtR/F5oAklFj8tS+lvun5Ba+mEB3ryfjKjJjSgKRkDGoBWTYS1ByZi8H8S+Zv6r2PdNehK UNRia1ztLFZ+6YgQPBYOAQqU8bZ0yntgQvuyB+BKmrJFj0FELzQsySJsZFNxr0nJSGkGSipgye00 VRoLYSOTLoAjxCONDeEvYagEt89EWGlAG3Ev/GQ6MhkOg5StWV5t8SqEApfjsFQWIAK1sKtQeLPZ eQDao2YWkQK18dM12NnhoyBtgrLJQYh5XG+RTVlhKJCrpWmFkAKEmi+pipVYWr4kpHvxvaXzxH5M 12u4bahswSfulQqXKcuzjq3XNPWT1cTDRkZimEOasuR2xGoCz/JEGGEjm4qRqHSitVmjFtaz777F ND0+CPhrf0msWdxIiCv6YBlvaHhtoQywkfEMSSFNy9K8CzFPtU6ECTayqbhgj6paoyWcaWqgQgwE ajspW9sFrct9cPktJtmQxHaLSbbFxDp8ybaYWLeYZFtMbLeYZFtMqltMsm0j1S2mFTZbTCu2LSbZ FpPqtpFsi0ntFpNsi5mUxRaT6haTbItJ7RaTbHFoymbbYhqtWbeYyfuzbTGTktg2mla1wqYHWjG2 mFGILSbZFkNC3WJSs8WQWLeYZFsMCQcklDVS9WxbTGq2GCb9K2GpLPaNiC1mIqtbzESMLYaU6hYT bYvhRJM4JtQthrvAtZuvCnXbiLbFTIR1i2nEg20xNDK6xQy2bdAYmru3bjGcECwOS2WxxQy2xZDQ G6i0bjF1Fg11i0m2xQx120i2xQztFpOaj70pW7cN22KqMLZbTCu2LSbZFhPrFpNsi4ntFpNsi4l1 i0m2xcS6bbSrSbPFJNsMmrLRto1Yt5hW2Gwxrdi2mFZrs0YtrGeX2GJqj8d2i2nFtsWkZtG2LSY1 C3zdYmiG2GZgZbNtG43WVli3mInYNoOqNdVto9YgtVtMre2kbG2XaV3qg0tvMYSZ9OZaI/rvfYiT GWSHiMTCwLD0wuepQkVlcp5PA0MpzCxXPtBUlB6TzUHKgzkRMnHY9rVFsaa653cFIAIt4zeD22Ij BJrJdyEulQ2hms4qUDGZVywg8Q2xyHu/XFbY9Re0VjvbpAbFowlNfvIKakS7JsLaBxMxBxOpsMdd l3Gj+qri4RkEboSlGFs1kDCcNuJxZ4CyzsE14+uMbg2gTVmlc27ME41QaaehoIpjrCneAzAq415g rTJ3NrMyblgPQEEP1n9nu3wwNtOp0KCxE7HTpWnsFnVce3MG0hj2rrVyYQxjKH6p7NDDOILMbRzJ pq3qLKdhM4mY2xB558fZr0qzZuAj1GEMsRHiOygRClA2FeV94ZcpGmsi5MynUFDFikqQD6lacqLK inmsenJk4UvOCtoxrAR/3sKFQMJgCrCUhMqHQ+LBG9iilpW8vjwJAFluhbST4fkqLaVHA6B0sj4t rGXffXtp+lvT4u4viZFWhhNeGbJCs2rQ4HprGUhpeM5YPtKmbMwwDjdaq5BrYDMxF/Nw2WrkYd72 yD9TK6BCPI/K1rJNs0zpcg9cfnMhhq2AXcASoBJ9tvO+Easwwn4PYmuCCHdwzrKvZQN6zQzheo+y fZfQbqSyb4UBJGFTsaUjQZZCtjfoQYgCEZQZu6/YFRKXkIeFsoRcdnlhzxoaPChPOWkCGRRiWiqr FCNTrQirmdSAMimiCU1Z4Q+btKsVNn0wEWM3pmOwbSTeYhE03xx8M2iCRhg0LhsS9g== gDU6XfJZmGIjRA1KD7+ilY1KN9vrdKx/D8KnLM+2YrjHSWGEy5vz1evLS2d7SKqQ+ezgiwcreLJc dbxY1k41IftlrP9MjNSmNCqK6PAI1OERTHCVsBAKECI9Ket1ALzc2FXogAHjnAyLc8jXKJvB4ATe UM2pN2SZCjGLkZRpUnYIPbSq174RBqEfg4IqBjKWhAnmfGXr5FeZX4V5yfElS3YR8ZkFe5kfWp/Z dC1RIWogyVEXyjpFMwa6ZZcloTEeTsVIT9honaxQC6vZJbaX2uNKsLm/JI7qwKBBGzDFFVrLwxtR 3b5msRosCmtStteMiI3WVmi02K24b4NFoLUHyLCtQV8BiW1tm7K1XY3WpT64/AYzjNMna5gYmyv2 sTYGuVQ7s2KkQQmABcFuKbgUb61c6fiwoq7ZdIJFv0nSak70oOaSiZCz4KAzqxhfxWAIflePMUMT ecVCLG6atbstS0EQURXkVEPKFFHkhH1hQxUgFmVSFkD6iVZ8gAs1wD4wKYswq9qsVtb0QCtWjDAL ddd1ygTOgUcDEv4xIBUNwGxyho4noZ4EXc1LF+0yrUKpQLK9uClLfI0IlNOw1anQiOZbcWcOctKq EaodIGjcLIfYbU5XsmFdIJOoqxnHRqGuIZ25RadC52pIUxUzEbg2V023nRCIiRCorq5mKOIBL3lY KoujT1dv5mTy8KrV8iO304gUaB9Eu6jQMpch7LwvjdD2SO/yQlk6uSDSCo77iZDjlOopB2Iko+FP CYGgsfPYulPstAkUj2FnlC5hbOqnDLtjJ9nlp0uJCm2T1gCsSVnvB+1vmA0nQgMCtmInRK1TrZMF amExu8T+UjvcyTV0f2kc7BaJ3OwymTE/XbaWNV8z7JFtyUFj9xuVVaivx/NVDEtxo9RZppLm/Sq0 k2LGN2pl27aa1qUOuNLmIscQqupgt5dB8z+YWKeUAN9StR5ylPCgkcXBwolIgSCUSawoGz4jSnKh WOMXW2Hsm5N7FS+lmKS4SOTm4zNqGBqh7S+CUG7LErCg12rluuS6hGhPBunZwiDY0mlZTc471cq2 +MX3J3EfTUtmcR+1rWqFTQ+0YuCv+LFBK2Vx1LSRFR2Y3jUN0DA/iLG2BihwtullQShDaPuLxrs2 ZZOSMpPQok2rqBvs+lLFAwDOrFPwybRsOYthzYJP5mXPri8RcZkkhi02woTDa4n1ayM0dO9EHJQ0 lLpFjhN0t6g3Ms11DaHtLgJQnpZVlDitezUY3gtAmYTJri91Eg3VhkP3Oqcx9jCC872u6xshvgP1 gE3LDgI6ppcFS7VahZwOw85pJmYWe3xIUYXNiq8RQ3yM9LEeFAWgzHtKj41A13FW1dvirovJ0Pgh ue/7tFTWCew4adKMRWHNrt6IOUgWNYDWyRK1sJxdantBj0eODd1fGoesBlmqpccMTxrdylwL1jJv 40BuxZCWyvaCOm61VqFUwKaiSb0QlLdKo2C6pxWIDdC7qWxTtm2saV3sAUnFXgnD5EhuB8eMOCEO GZuIwfBT77pGtsb2pd4vi5d0L3GXXTjIM1pIVIMtYLGiD81vx+l6NG7IsAUsVDthgy1gBWovNmwB CQEZNmzBVOhrkGcrRqoMepmHu1+/k4basPXtkxhBnpOyCPI0vAALNcizwRZwZgENzmvKJgvybLQm C/Kc1CBZkOekLAI3m3a1wqYPWrGiC1io8YWppkZIFuTZoAuESieERqwKugmQAEI0wdAFTNCjQMlJ WURuAl0wlRm6YCrW6zIr1SBPQxdIs5Cn0NAF0gW5BTeqsMAHruiCqdDQBa3Y0AXcLxrkaYgBHkWL 4zd0AYkR5DkpiyBPQxfwhNEgzwZd0M4jQxfQnIMpzhADPGUHUAHEGuQZDac+KYvATUMXtMIGXTAV OwR5RgvyNHQBCzXIs0EXsFh9ZYYuYK0a5GmIgel64muQZ7Rwi6bsYIGbhi6YCmMN8mzFGUGerdZm lVpY0S4R5Fl7vEEXTMUDgjyNnaQiBnhJsaXS0AU8bXwXF8omC9xstLZCQxdMxQXhmFWrIQbaGjTo gra2k7K1XaZ1qQ8ue4XibCARAB0L8iSx14zfA0KoWBiRGxxpF7rB8NpDDfKULCMOdIxIKjcYIcgA X20rjG2IYyu2cEg6nYKnwQInB83GYUIoGI+8bqks2NtiZTUbNHcyf4MI8mTxUJbLFvsKTSsZXLq4 VANCXKMJTdnBV6qJLi8Jmz6YiBHmSUcpY6pDmCetGIgobcI8o2Y8NzFWDDC7WehmNLKLoQ3zjLb0 T8qCrmOoYZ6tsAnzbMUW5hmN7GWoYZ60vgFB2oR5ch+oAgvzJHMFqNIQ5lllfRvm2YpTsz4aoMTC PGMb4eWaLsDW0ZQdjCyxr7H5NB4AOVuYZzuPeoR58kTsEelqSaAHsxL29SLIn1iBgqbseHZGDcRK OBVamOdUrA4j+ZZAf6FhnvwqQz5bmCeXzdiUNcyTherMHxC6OV1PLMyTM1xFrCdWtsdtnqHTSyI7 /U/FGuY51dmsUQvr2SW2mNrfQw3znIqRH6YbjHVnsMSmluHbhLZRCtF+W5Y2ShCemNZWWHk9JmIN yJxq1dDNaQ0szHNa26ZsbVejdaEPLr/FZGM5Yzoiy+LLEBiTqixlnBORHI1yqjnbHwZMSUp1kRYP TsQGFg1qGfoloQVFTcXjIQ2J4AFjjSD14xSZSosc21ysGYRm07LwZUdhIBQh6CnJdDgUa8J4RF8s S+nVurCgtcDIN61BpbielFVjUNuuVtj0QSu21Zng8Q6dSBGVIux7sMMyU8yGKugHQDVZDCEOhHY3 ohB2NIGFqAFodSdlwftFAVZDXBDSl930QRU37EQxZ1AxVIqRigTm7XjD+gAKJjQaIAEKmiVzIvQl 1D40qfJ2CXcL4uKZA09H0SjCjBhPMj/7sFS262w3iwVZ9sA4MMiVb3Ee9S0jCy4sfSV1Haesw17G QsxkBCFMyvoh6LrS2USuMk72gOcbccn2fLGdP1tSu1A5Mmh9RwsQ7jCAA48VaFAoL0b2MWfc7lho l9lsoSoomwxAouveotBiXadi4++tWts1arqaXWJ/yU1YITsu95fEEfzJlMvaZmexYUgJlWUhhqHk hZLEzxDcgs5WaAHHrThKvshWZ3Obr2+PNeC5remkbA1vaXQutP/y8TftQZBzaO1DrCS9A/KRklBy X8vcC2CZQ1T+IAlJNqAg4nDUK8QmtyfvqEHpEyHvntvXFsWld/YyDb6O4EkmYe6La4SioJommrJk 28CurKkzWVivWqEGTgDEOykaIoIpG6WwuCxUAIzYk7LVNmLNaoVNF7RiTv+rwtjZNxlNQYeAEL47 oAkLVwoI7aNWNxwJjbuRhVIDiilBH1hZ+oBxJ2oCaKqQg9ahAOLKSkRajd0B9CLcLoDsU6lhXGMX 4PKhDBoU0mJ0iYYpnQhr5EYrNnLQ1ED3gaOkURzANqjJOkU8rkVpqSwupj3Wa54wxbDsdNVbnEfg YmFeT+wiShrLZmdQVpAMXwGu223J6BAoD7jzRDhgb52Ko4Z7EY+sU53KK84vckB+pQQfnJyrEPja 2/s7wGwTWFwnt0QPtwVf/LuwVNap3ZNAe11cEA5Cwg4FVewL2gqlk8VpYSG7ROBN7e1BzlL7S4MA ilwar4CZOX5Q+A5dsJY5oFQ4Vqn0S2WHDsBk01qFQz3kTcXGkVu1DrfUMddUYGhob2tda8m2raZy qQMuDy2IhoakgQM3DXMb964RwyeLBbhxbtW6+Bgr5ggzcqhg/4gMRnlA8uOpcGgQQ1WasjE+w5gw VIRkNAeVCs2v3ZWyUHb8yHvYXoAbS82dnzMdb+jzwSPQrxYF7nKiM/rSr3h/9mhAU7YUNMBa1QqH BjZWpYbyS8azO1SwAC2+GVOkbxpAmUAasQotCBuBPCxEC1goNRg3BZfTQlm6OGJf45DHqbCXPRgK qjgD101JTSxsHr721KD/2U1lTSiAcA8ZxPG4N5qRaCpkUmRUoIqZZ1+7y7hfQblDg6gnlpaeh+jk e6OTr2V7Izs2zD8FShqVEJKNtLOobwnxvZEEKKUiQy4M89+10Lu631rZlh0YbMkTYWjAFVXay/1K vqMBlIxItWDE69iZDZ9im7AxykfzaBHE2uNDxFKiworO6N1SWZ889iHgH1thqZCrKjai2lbrZIFa WMwuASyoHT4Iwn1/aRwMoE4OSUxwzjOioxuwb7MQUwm+rknZoYD+qdEKodbA5qKJQdLdaB0sAq2p wdCwsje1bcq2zfUV8LDQB9SPn69OB81Znsvs+o3ZV19ee/39j1337d2DnYcv9x8f7unf78yf7h6o 5PrHB08Ob9BONf7vq39c002rm91X8MJSfrhu9rvxD38bRf+Y9bNPZn/8czfboYc/0z1Xs0MQkRRZ DfYXxEzd2+uJdlwbuGOIfTCCbQK7rgrlqt4hES7ESG0IWnhTQdla1ApSX9YKtWKiF+LxpCBpITYX xIHow8QUhJcNHcXLBFA/SsVMKEdANMPEm9faJjcqauc0L2uFWrGN1f1rQI8GalKACKCH+VK8r2LB kZEYHV6iBpaQ0DhUB/UPm5DnbKHYn+gWyobxgM45wUchO01uCg8ZAzMHyT4JBU6j5UncdwmcUoJK GoiIMxU3EfZEEpgbkjyINcuNCHvZnAsZbxIU6OVsbPbY8WCfGXvT84mXmOs74+YPcmcsCTmkOHGc GBlLFNSdKAiwU3LPWZY1ikyULGtkclB6WQpMjEiNmJXsqgdWnLj3E9bVQqGJfEAo5CLpwdvOUGxO o6b2OBaKQY9yqw1YUChVoKT9gXjzWju+/DrkGCKPoyTfjpXXkBACfHYkVQmXwUL+Jd5LqR8UulcG 0HfQpMoSSFAGgL2pb33srWW6Qxc6WCRkpO2R3qYQPUe2Bssph4Zy0OGhZFySJZHSt8Y6EornoexY HSZjLOxlJOZNMEy1wmBnuok4SURVCZpQieai64w9X0KnSNh7ozFFA0icemRZYK8Yy4pz6CzPc8OE 6Ngs+dLbskCnsVJQMdHxe1Dh+AX3NuKY4sS35VG2yNWb+IadT0tCHi5RUMbpxds2xHsQc+Yj/iAH AdcT52mX9IseNA5zeaHZ1oSGEeloSpDPd/8aelI+XxVvLojdLQLFby7oEOneas2ab+972hA351tP FjbE+5x/nlKRUrKKyBkrvtu+yBtK9pqWrIxjocZXChwU8EWWP93k9HldKQqGNN5uuqLxmTx1uKmT OAn6IfeRLIbiSuFk8rxAxED2C7aJOk5coNmYCyYxiZn7XRIpBzHVOkqOxWe8OB7I+l5YxpMgukeh I79oqjXosipIsZOyvVyyOBM4sj9Qu3pBLBPLJUBxjpgVM0CplnAt+E77pSsKV6CIIfEuEhVeqazU qeeTMnGuwU+91N8vBY853r3oFl7MKq6ZM/IQvBC0YmBK4O03EKtqD8/x0POm5jMysw== kZChuCwcD38VnsSG51FMi16AghJ4dfCFcCZwaDP6Q7T2ZlZXT4XoNd83b5qs1A+9gUsIPzUKyZqT KgTCkRtuFDfp9QbJviMKguGjODcXK0jV6du7PIhQb5aMoKCFehTSXcsBFcEYj1FIkFRfoYrjSu5F 3HeDDEvS3FukIEcPIQOUWeirmzGJpYIVsF9NhJGAAKPQIwBTkgZ6VuDaHszizWVxSPC0MuCOn9d0 leSeitJUR7erxrMw8LHE0wx15kmSxjoible8VhaMNws773G2pEnhoiQMRF5fdl+xOA4JzpLx/kHt dHQ9DRBmYh7lknYA4/QQctp0vK0jQQWb/kYhXekscQebWEchzXB4rCgXowyrCzj+8BfI+CYScm1F yLg+Ken73r7WsZWswGviKk7c0fGpjrJ19B4pNorMX0oj0NecBOzmYmk/dHgVXzpZyD5WCL0Kx+ZG e79EZg48bWRaUV1z0ZN56b2lnaRpx8fq0oVQZ4UMVke7SjSvYZITRpKD+0t+mZc4NDkwJ80dQqRy skOTJWfcCF9wWT32sViXXEoAJBt8sqwZLktMwygkiz78WC7LcLBYDz6kYGyhEwVdTFicxWZLQnYS YSFnmJAqkLXBU+pF6ZhxwRkEKDpOZ16SZQzoRMgKvI5V5HhgelT2C9LXd/Yor7As5AksjzpBt7I4 6xT2XhKYsLCIc9V7SU0j9Sma4mx8Qh0eUiPZLrxedolzC/ZNEmo30UQEhtEr2I+lyYnb2tMdhmye A+eFSRCy8V6malRbb/aUoLEvoqCTE0+mJbLn2w5Ndd0DfJKzNQvp0CjPJzGesTQ7GShPJHvyYTt1 A3DBPOjn0zkNdBh3KrJ6enxVsliPQsb28heIc4BHTkb+LCPgAON+EgtPdkeUPvJd+YI9aNQa9Lvy RFOZVZgjhiDQmSbrIuI1byrtfRSaxEI+dPBnMYo5H6eokCgvUqDzj1pGvfUCer2UdQilIQUCELRe UK1B+pDGG2MbnAQRydDI9ZK0ctAnD6PTE84o5ARqOovSYF3DJEss1ky+gc7WUYtiaKkFZL2T5w2t Ejoxt8qHIA5cUsoftHzFScDW1LXsOeQvM9rrnWql7KI6t0FYxasY5mYRJAn5pm/l1NvzzK7DUg1q 5VkYeXGmMwnmSxLHIgv94G1qMu6bl8HsE2ZRCF7NE9amJCclWTBxMeVpLKv7KHZ9wMfJacR4ZXS5 w8cV9TMeFwTXD/Z1+q6oGDmi6axC2RzFEqBIk/oZdp2cqqAgFa/3EZwm6VDA63jPmSNke/ZBv3k2 D/hQ16coCDa6worlmU++wiFFF+M4YMVNHXLLFwSE0dFV5ksvF0TLxVMk3zox3499gE2DbYdcVrOm 8u6QOcSCk76N44FNQ5ZiEiuabFzfe170e0kFB2FO0gIn8XNY9Bk0zmdfTSDMCiIHAzHbMHYdxtHK IbnYeaIIQQuL+ySRG+PKr/BdIj13DncK2Y5J2AGEz5tExPv146Lrx2D2N92ifSe8MyLsbHZ3sl9L BbIuUbSAaFUlIyKJAm9kXM7GZRTrlYCS0uvMcsJOxNcEW4u9Lm+cEJz4a/A8J1NW+6F+XMQQLxwH xW40XunHpGTJ3nau7Dq1S6o9noS+9GrYDCEWFbJtS4QZtxeveadEAXYeAi1HFfIZ4aWWjcpsn+U2 qDVQlF8WNoAXWjE56PHNstctWc/XmbD+JTm0TKcGGRfblslOy2FJA0aBzYYsY9uXdm2HYCnnYnMm 6CwNJ5YYL9jALJENMaqQD3IsNOoSGUegRvo+2tXWsIch6d24SLq4LLEk3uY2Uq7TDcZHfZ6Dv8Xl 5z1Wguwz4Eo1JV8RB4k6gPUzYs6IbDAuPdFZuvs42IGM8BIBMBBnZeWyxlb/boBQPxhyqQxDVZAH A9hFweG7CkzvbQgdhQeAj2VcjLFq9fi6mdpL5gCdaR1YVoqv+fCCASFqJEAyBQRHH4DRlZsFB94U vRkGvdkK1hSXSDrMgASd+fZu8iVYrmVCTeJ12STxUJRLIGvPkJVc7ABE7NbbLVpuUT3n5k0VrS0H Bc7t3euFt5csoJIpuAxQ0GevUZ2lx4BhK5SY8kEhrJShKCPQXUe80ySaEhaa7cYaZL3RcFUFkAY9 VfTCwORUKOdoSnY8dIaIDOIuZbHPGosTJD6chdlZmvoSowrtHEx56oNE5QeZByqUu03ydjTsPNb4 pCdmKPDCezOKx/WjaFmm6NCyCcYY2ZO5pJmTOmcJq534CUXo5UtI9STeUbocnnKJzDZNfqwsO3jq hK9RhGKNIa1O1j06IXSMiEydGD/x/DinB6i15FQc2MzmKD2tifGT3dkxS0oQsYlmIZIYxQVjwOmH ZKsnrXFAwidm55K29k1qqSDh1JSmJyHPnO5TSa9V+iYxkiU1MEBBCAkKAvJQsXmWx5A7S4yvRWhA kxdT8bZ6eTjghCcBEHSFzp5CIeDN803Ojp6j5aAVCjg+l8VqDmBLb8ddmPpqWE8ynJKzO+eqIMmO ADq86csIK5UDhBlx8l1bA3UNkAVUUYQlYVOkCGsYthMOQEz4YL4QgpqB8kEtCmwuD8JDERlIrTK+ OcrzxisfJYJSng9qmk+CheO1hLcmFeqHlMEtKWJe8nnh0qVXrOWgkvFBa5Alrbmse866gFi4wYmE JO/kdUGnFEvv1CUdlsY14qwDe8whPg15Nb8OxVKFwKzs61rKKbAHzAz4ZjLZLIUVgTI/RBAZ9x1j p2jJSRV6pfvJ+DyfKUhIFk1ha6CrXkJuZnzvTiamKOgRoEofTNQk3hoxJJUdlDa2lwucLG8JmZiy ntNlwiuFQ/bYaMmInh1oY5mFiYU+GRCVU3+pWG2dpIBPIvJpyPpIJYe6Pkaj+XVAcSZnC0lKghPk 1cXgFwkHoFhkZA10FXm6kLhzYKUq2t90IneV6wp1xe7Lz3dRV9jegTtOuQXHRQ/upRQEZcpCAv7I 40FAYSyFI4l2myHp8mxsnAHnr1hawFHA0TYW+16oi9RhQQuth1CXV1qKSwJ9Q6d2XRZHZdFw9sV2 NrC0B/VFe6VLAfQNTpiIZQydKIgF54RIlyKZm1Gvi1zXcY/UtTSqZ1I3A+Wp6+S2p7NImUQ6q5YT q6DVwOZGjEIMRi+TUyQ13AvVFr1ALliJroLahzRLYlRpCQoI8VbUDFMkFBOUTM3BxkCJklOok7DD lSEFuYroGOgxgTKaGc7FWQWCYZFpFulSQgnmHcgV9WxPk6QgBxMRkXisUKaAbFe9KijoQjpVgc2l umn5ZaBNaWY8FphoSwEd8XzUzcAueYzKSRDnUNGTcgymnwXhTN9hlLNDuoVUkYRFk9A+RuB14MLl 9ZuFQ+jAH43ZRiZaA+M6eONInJUQK9toFdhEEv9RShaxiYgCcjo7JffAZ8AcnHLxJFOJLG90fAR/ mVm8edksYC3EHKBVb+iUVMyyPPjmaJ5tBEaxzoFMlwdXdN0Fa6CecHU1NyJ23qNFAWOP9dbj5WDM e0TGrWfsG6SJYOMjCyshaS7qYeDLpO/h6y9dr05CNcqQK1m9lOT4GxwydhJVTNQ7fYfNzwm+n2+u GeRc0YIVC3NZYBbrIJKhAeDHoJ4ANrTIdZi+wyxxzmS+6W019bg1EXBHT4BJOa7ZgqQhVPzJDuYj 74ZgCrKaekLlcOpwpCkNTSqZRBkURQiJDpC3cSlJodOynLleyurpg0AjcjvhkmImYDgD4Je0Fvmo 4qwJkGlvEGd16WXpVqGcIAn7kXAujEmS2bHFDSfTyGmTFJ/ie4flmM10ApyxLZW2DDHClMHYJ2M0 c1M0YCx5wwenoJXx/qbfYjS/NJ88ZfeJUea6AFGUKikONjRJfFqiYFBXGaOKlAc59upqJQVqlBir jxx+hJzwgFyMYl3NCpv09PneGQwjyuk+BhvaIhulPW/i8UbOUybSrUgwEbQB8wUpxU6tRQOnXcb9 JHbC3yzgDvEpkQKpAQlRKzK3R8VqOWvAUORaJpAP5UsdMpzV5Cgbj6t8p6eycv8ncdJTcPRi+GBh IHDBi2siZhym6C1WVFw4ZHpWJmmCGVBEiQjJPImOEdQEiTu9otlwMQxNvw8aWscuCTJTRyBjY5Tl ncWSEZini7gQqVldv/A4WQ+RODPGWx1AcHq/ikmwx6pxKCqsRnK+mGNqZ7XIO4niF6FXH6iHKVhK olPttEbHB3FssRFAd1QHFzZhJ3LEQcGHTt8ULfCK7pDdoAb56Gx5SEPUvu513eVraQ+8YkHUUtLl TsQ4VXjdu2QEgy2RNgNyqMdFWba4Cwd7npkD+HmsT0k5pVmIoxofKbK+fmwIGNMAwxwrrRl36PpI W7YIh77hDtRaOUxAOlwUh3ntnIUtqLfZN6ftJOxrMlY4rRc1JrCXw2soUqdfq7wIMVdBUqeI70Nh dhSs4HtA1EpfQ1gErUgeQswASmVWBsD3sqVI9broa3jkS72fKbtvMbs337lCsrEaZ9sLrZh4qnqY rxJngRWXWBNg5gFu6JRkEMefrO6zCP8dn4nEi0lOLfHfcVIPdhGwtzvgEM9UqkWd4Eg0QTc54iYU r1pnNVAgBNE5pVhzfWTfweMOVsms/P3kQRzAQJ2F2E+8w5URP8OxRj5MZZXks5j4OzvDVdIRkK2z VJKPpaKgwD/uHPzjiUNSOgVY0MFGhVGwMOSGtbzChDaXhdT1dR5mvbgKxKNH8AfwGX1LSp+FxprF RQ9bpFXRJMSoEnGI7jsBs8QmcIGyyDHuxsV650lYHgmNovYMOjrzIZyEyfKiJcUqCMpl8OClFBfc 4Ooxmg0xvGg5OiQP9TbMHzCDbHrcIxIWSDLC1+APOPNzcxOKgD65apFhWlmenOTf0iRZQjXJwtYk QWsJm39IrH4lXjRkN/ST67gYQRl41LvKbsqUFoIz6ozJVZUGwUvpYVMGi7w4ZtShm1QQ8NZ48h0s r4Lc3Rl9VUmT5ZJNiKqur5SQ0fMO6+lLB6E9n88YJRY0yI5uXGwuJWG0tGypx8mB/LRqQKNKZSjw mq2ZjHmyF7MCW+F74HwYfTbgZRwLxJg4joN4qZUVuxLB33i5lB5MnpdTH/mY8gILt0D4fJzQo8on R27xGoohuEaugFlMU7JBoKeChWGJ353cz94hXCr4QYUBONy6bPh6rqUPkQ+Q3Afg087Cf8JCBtVg fRD6GFYQtbGFmKSijCwSaVMSFucBiqtR0x0OSjSNUi2rL+trxCewoTw1AmDxubO5SbeqZHdErZY3 szmtpk46Vg2TuCPqqY4wQqG3BTlJd+mhTYScB14geHZ8oD1FYBreEAW898h6Sp8iVl7Nx8Df3BAt k06vfkgSK9CChGIy5E9RV16OCWOgiKdMVqnaHMX3TwqyJr8cAPlkaJ/aLAeJh+IFxjhBErPmCV4o i1tZhEFXeQL/RYs7TnysohUqYh5mQ0eSm7CznG7izuYlTucGRYjLCsOABVzxKCNkJw== SMBktOqcpTHqGtkrzJwzvWYFHZaSoKAYPDBVu20Rbk/eJoqebOga7ETrIFYNHELErEDiJr2wHi1d b9OgKKm+YIvsflOc7bWUNg7JuSvqEZnBip0r3FABBZzrXm4HbrAdoQRgYMadUkGDJBScBSO5LO8H BTHo9tPZnZxR+b0C5GAMJixJEBBOkq3BvB+C5SL+KDXcF2wpHOLi9X5EV8sU9bigR07yVelZoZdL Ay9ydLEbkvZBp+w4HYCr5EFWMK/d5AjGQTakDfXLKWiR9ikghx1a5R2MaKxATuwMpvXeFIjPlD97 76Eg56QffSoJQnyeTo4aG3AtdlkXE2MNcmrCodUIUAtCFMn5mNB+3kLAaFkIuqkkp8BN8mMWXTkZ LqhCtkcPAj2y5wd2/fPam2vRgb9ZH5Frh0sKytETOitmU6A3VELxRSurHwcpUBRRB6srbz5IXkFi tIDmSIQCbFQZEe2t1iK+SSjotAnFcI50MZL7qC8woLCQTXYkZNceFCyg3Sl4gkDFhIxPMzpqI4gs FrkGihWI3JP7Ki4CLCHbjvrm2JnBfnqyLam/jUqKOZIibeoxohMoreCjcBLU+7VYt3q7JkoSFC4Y G7+EOGhLk/nOI4iAzGu4qI5Kc1B0FRPqQ0EQ5nRamIKdYwSnyAa+zrJX9Gph5BSX9UIRlMqQ7MQF IXNy7lXMDst6+OPJGNm5Gngk4EES66znXOW9U6xFToiQFAAnw03MVpATDHG5hnRlHGWFhSDCHisb DYM9avZCJeUQ262YixDkm9scKJQ7SUE8lOyk3as9cmrwGiG9oj3Y2MTp5iPWPcJqWPaOAjQcSbN5 tqp/16yptCVCyNMGR+legll4iAacTOReL/7FAd69YL6W8cKXrQUCuCVvCZxA1Bk9yha4B3vYJ8lw 4s271+tBTBynAUQSCuejqQfumWyIBAVgYq+WBZ1dIDUUki1aCgCJiGSEc6tnkBv2Kb5aiDsYTnaa T0kHESfZoruTjFbsqo+cfY1ZEr6Yl16/DTqTFt29koYCsAuks7i+iikgE6kG4EUAKHkUZWqUqDYv SWKR4aWOBo2p6YxJKx8WBHAT0QQnywMr6OtW69SLMiDIhoUOGRD6ij4QYyb3dnI1ZrIoEqg3qxv5 7nuBq/Stn19N2pyxzIACycYmAKPFfn6+D/Rsyw9AKmRJlkdzI1akA3OvyTRKDmgRwCoc8IM8tAqi cWLx2NZzAaKnOpyNOCg5F3h+FdZJJ48eKJycjIyvg7GffJXAeHXwFbBPvAfiRlcI1uoq5If5EVmM aDM+LmR8i94B8gNPu7OJzIcI+0JjrJijCKHmiuMjhM5DLbmNfdnhW3ZgG/OKL2Z35pBwWpA7BqMl 6IgABcAg9C3GSy40/CkGPa8ENfqwAqDkzA3EzswC3FgckMQipohzgTq/kSQDCsSiy1PeVZSblY0V OycnNsuvIgpoXZDkGKkyd1PUbFC4isZfdGwOUGembakCnZO8K6WSsitQJQ2KmgtYsOhemHztfXgn Iya7NBQp4NlwzaBUCnULgHQaPTNlTEG+gPFGa8E7CVmaGQTML6NwAYEfEL5D5rXr7XkOjJaIoAFd mvXKIc9HDd9qOQv5qgOmDAV1MKizgLzCdZrYkMRMwSaeTI0ecgm+IqZ4NK1ibxLaNnS1o90AlMkY a6fxBrkl0aOAngg2SfhiGetqRXkUtKhDdyONAqFajf7T445ICFjgP+lSo+huh+89R6RVYxh2GPRE 0nsw+HvF3ohYYamEsO9BvK4bj+C4JV2dbuOmQJxwzPKlMavB/NGFAY0iU18XYa57C+gIwpUm+Gxx R7NSWckZRy3T0BtykRTYlPWKO1WAd0ZlFRlDB0DESXgNXWAh3IgMTRa8DaHRC0KtdMoDoX5zAqXv KryMxDq5mKHCYPeKHi2dBOaIUDHIBLAf2kGUuGG+G7tBB1w/BKqBTwY4thYYUJTuiwJx57u5TTjd ZKkCqeA7QOSDk8A5m8YCceejtcRh0tclJ7hSY30czKYc+eCxazgvVyg+3COBAAXz6Cnei+tMIioC QEd0ckaIMe3SXu8hnAbmhX4fvYePWSNU6XYrYNlS11cC6atnJDdhq4zzjxYS7wAw7wcJOsww4nAf Sown+SVsMSeDTOlV3CnE3SGfIwcH6pR3g561BoZUl2aN04Ad8u8hwlSBGXSMoCu3YKZrxA6dCQDl VisUbSt0ZJd+ceZ06u0DJXeG+swInSl8syQUox2T56Yapl3Fei6jl+XOazyfTQMCpIiopqwgIa97 A/+MsE21M1PUW9BupSOw+GCaRKYkZjyJOjsy3sShklI2TqaQeFVKZRmVcxbHyPoIRtJirg7EvjOJ b4D/YrBtTp0ObBkzYHPRBY7jeUFQnuUwLKG71Cdy9QZ2gW1+SRlhhFBarFDkLM9mmGFIA1trOjPM cFinWHaqWaOziMjc4pWTRv+Ss7OCmMVeRZalavBKiIUjIxSgqlnjcthgRSZYGKwkkIodf3hZNC8/ 2bPGP73Qs7UatZlq2IHKQ+A57GFTqERBvAzNA96KYcpDWHHA7GT+FnESusGAPISCLR7GSMsyyTFJ GN8e1wOnkGPqBT3vJl7wogoZ0AYFnCVYekxNgR1cwmThdErJ0iGo12nCMFzUYaNMzGAh9/QSIGM/ 8Qs1HjOfGIsHiV5g83cedNIhExpfvoMGkRO2Fxda2eq4BmojzYj14FnfB4OrdkEbxRdmc7OqLxGP 0+Vdg92d3HFfakm15LnOSBDpZqifjZMbmgjx0Sg8svpLxJXXmQmJnQ2denSN9NThsyWPruWoI5ya Tq3K14NsqrIedyYEAMByv6itQmJNKVGD5uimGggPAtEk6F0s4wzDXu3q7EBsei/PqK0kZXWfG/Vt L4yQC2AVMhSYX39QsEJxiE3iTwefHC1og1L1AMqtQaOCACAjt8whwkqJDasg3lyAgiCfYXeqjGxJ HbAOvat+KMGAMjLCOAqzogJ8y1GI3USBKeajVRCLB/V14w3ld1kyPV4p5E0gE2HHpZAOkBipbYO4 ygTZ0QECIjFXDAGpDfAaycV4FR0DwpBEQGNA+cQGmqhVZTsFFIhNQ8arh4JBw1KdRX8QrFw8S52C AoDDAfiO8PYF5lFldKGzBjlpX2hZgO+SuGZvrjK7MnPJIgGNc8ZfondiAkGGSl8ijiChP8GFDiGc uZ5i6DSQMjCQSJPM9CU+aKQfAow7g6RRkJfu1zWUia8Orl6KEXAZwcnF+1pB9N6AEK1O0MJyS3AW h1OUV4XjD0Gm7xAHw+YzjWUCJUXPEQoO4VxOHbgk9sku8NPuos49I5afceZSBxM1a+7bDjb4Lq3c dDTcVzEU2TVKeMTEkFAM7U2bU4gIBQG4v3SIUiWfsBqss1fCCEZAB/X1kYkWMTKMUIIBUmPrmJGx R4iGwDTYsBoi3G9OsdJFOCpqDQoqmwxTGzoYEPVEw0RZitR1jRWYEKN68fYG+CrRTNbBIGsMtnTg 3TR0PS1ewdir4dHpMP9zqsFiHtBq8nwWS+VGl74Osa99Npq+6YC9ZLpEcECdnfMx/W+s/7PG+nPm Rfxq51oEAdi3Z+P/iNJr/PfKafD6t2smAn64/FQgDVecDKziatOh1uLSE0JUXGlKiIorTQoZkItO i9e/fTL+73Olc1u12F+Uzo3KjVPK2XrCKwqB28b/zDgRep7xhaDosuKVyYrD7p2vy4rG5hBEQxMl UwmxY5V6WGFy906NJX0AID97RLAS9l7SxTDISvwnZOzQOEsCx4rtnzlALUmwsaSR16UYebOYiHmA E9CSUULc6VAyNLgluQlIREAxyI2YDQmiobGTHLonZ1svNJWAzLhOjG6+4luzZBcUM5JYUGh6a0Al 3eoKwKEMQ/Fq3gKhMgUS5KL+1ZIt0lPN4SSscZ4cuyxCYVSQkE6xPWfg5BjY3w84JnX1kNIek+CD E/QeH3LAh5r1biFJLFMlYKyG25xtri9Ml4tvYP+baf+bad/fTLv09rliGmL7vMJElM3vSlORVVxp MoqGK01HaceVJiQ28UtPSVFwlUkpGq4yLaHhYhNzuoGv3W8vvYsrCqontamuqRygLxfccSYyRcm+ flCIGnMt8kzj7qneAZRQHYC03KUawclEE+KZcULIqkclgQ7Qucv7ylpdg8GYY0emFqCOnX0JGbHY bFM32n+yWDmnRj+A1wkwo3jTCMoVjjbNRYH6RobDFiMXFWto8PsieQUFCEu98VLXWoV0uzovs3oJ vJqHOdFTBHoSJ0VwwbJZRzPf0KogplFaPnpb0QJ8uaWAZorjPDUYcBCb8MoRFJZiNhHErGYSzpay b4ACceU1eUe92n1piWHqwxfYcTV8kYJLMnAGgtUgYyhoscz0wJ4JI+khV3mfNQjDfO9BaQIYLNkw yYiVm6DbNU9rMErUQQhoxazTSRiIz+JJB8lOJzBQdlPBgAOD9CCZJl4AlKCcigEx3tyGkJXn0NK/ BsEcSCiNMXWSWF1mDFQSUSecUrRuDMZPo1wTzPAx1PueeuWJ9QK4lOrlzTXb29JHBwVw/iZzsi6P +EudCh48yFlrgakAVF+C6Y9z8wrQrLh65wC0nyGQ2VW3GQEwZNpwGLo4GWE+HSR09CaTcwW1XcaG g8kP5nfLxrnrsxjlNM4IxIzkRE8SQaVsKDeViEsCIwdGVMNPqlTEPK2MR1WBMLxjZiSlVIoQgkYn M69FpfJkGObgjQZKKGnYFFcnviBZaNMHz82KYZPxSQIizBK7s3LM7HkNFVe81cphrOMrRmAzfsJQ Kt8UixXlA5C4WhnB+gqallx9VOTyVowrEaHA6++M6i0b9TKBDhQSk2tAMYmLzWhAYsaPXgOl6UCg LGUeAYKidQCYIYCAhfdwo+AbCuiv+5LgxVZYGV+VO8zQDK8B551TJ3AdnAx3DvlWQ28KGkJdBofI 88oxS7xbApcjYZ0cCS/iMDmsEzhvKFBRhE6pchRhpx9jhxkTjT129URaGu86ERaU2Ieux6Zk/nFC vMnoJj426Qk2JIWuDp25hx2AIpyVajBLhsKqPCj0mNXfK11Nl2OlrdJBAExVLeMZNBuG7O4U7s3w Rt9VBQAiRtDzM5mW4N3ID1ayNUC+Ri/uXmuAkJqQ4QYgNiDxecSCAdaBfs7yjW8vLKC5pRlb6OyX 5++8Tr2IPJSSZZ7xrx2oKjolvyJAz+CVQKPSJvFdolcrmDJs0zEFXGWE8rRQLPWhEUAQrOM1oI9p VNIAP+qgFGwG2hLAtcAhk/iHpAZFqE+5YkFQNHQs6ZWhMCD1PMNfPfj9umJO56Tx7ZzuR3kDuSOR /5VZUs79HpLD6sFHzHM3PieR+dLlnRHgO+HV1dVVT5wZCwDhczTNE5M2dspX0cFD2sOpQ5Ad8M4E 2zLiLQRbwg/Hu391BDqQyRDgRfO8UOS/RtYYKJTi/gf+IPl0CEJkCt1nzmgJp07qig== 7DSGlBOJKKkWY0mLhlM7CxIwfhWqQBfNn54j2DKyHbiFm47uo7GvpCtgl+0reCEoR7Ld5GQa+OT0 FsdsQzCYF11Wx0OzD1h9FgZr8cK+MgfGV+/IXWuZ0kHu5RcldfjaSl+M1kFeehViB9FwJWoHUXEF cgcouDS9gyi4CsGDaNAAQqV4sNkr2DambQgOzm1O2aAUD4kgSLB8KBt3p4BNFWq/uxqp6i0tFCVF aBSM/ZilDojSJDz5gARWSBe7iiVCVFyFJwKVGA9e6tC3cHr+Iwr7aMJgeazIG1/boddZOiiUiPcV q4TmDmekgXMZSIPkTAUdURIa6G2Jk6MjC2OAIWqBrwIKrsBYISpAKy0/dIhacg6sHyFGi3TXtAOS DGPDNDBeSadKD8iGMLfxt4wQK8q1m0BwEXKdExRrCj4MA10kS7NA13djN1hkzoCGy3NniDXtSuwZ oqJobHcPqko1sclJnFBusYdXTdBiDMmhM/uGGeS6jDxi/CfZH0FhUgnrVuGC0JAVKKKVeKMlZJIo WIliWol3WoGNEhWdLUDJYu+p9CDDkcQDJ3o5xpaFDKfdsFoIox/9ELB9OiFCEqFiY8irGAfFffH+ WVWMN1SULgUvBMFH3xtwbAkjZj2xhChbiT1bhVOTiUl0hEjhYPk+qXRSWFwXjXcjut6EsS65WSLk BF4JHoECdgMKMk4Gt0vsk5WX9dFUUBBd1vQWgCwmyzDo9NB8cxVir1FRUBpka6SiR515R//CSis5 v/M1xycdxIQxJYAjahVdCb7oKxCWWN9fmrIElbgCaQlUXIG2BCvs5YlLoOEK1CWi4krkJXWnuCx9 CSpxeQITaLg8hYlouBKJCVRchMbka6vyhYhM0MdXoDKxGXtpMhN8eFegM8ECcgVCE2xCV6A0gYor kJrA23gFWhOouAKxCQA/V6A2gYrLk5vAYXkFehNRcSWCE1FxJYoTHPSuQHKCg14MiELwiHLuZEcS H5vyY3K2lKB0HhzOgrMiLdBRI1KypIkRCHjU4ALNpMb2r9CpkKMxqwpsnYNAs0RYGViyQslWkaWI iivRpYiKKxGmiAoKrpb7zSCklTfFP+qjXjXBaEikmQMsGLytoi9sCnShJa3HoDoxmd9MK8Ng4Ile CppZGV6zIhQHaDSyonqlWUFeJaZZGfTTa2lWXKfbt80KEXujbzGald4FE8ZswgnRS63DpaleqopL k71UXN6l6V6qissSvlQNl6Z8qSouTfoCFVegfakqrkD8AhVL1C/44QqpTkXFlZKdQsXl052Khisk PIWCK6Q8FRVXSnoKFVdIeyoqrpD4FAqukPpUVBRZRzX5qcoUxMt4Ew0wpv1B9+4oiahUmDyEqS6P xaAGESc6EgaX8L6QEZoZ9DId5exbVeCeliQVvAiTZilMsgOLcCkHK6u4WhZWqLhCHlZRcYVMrKjD FXKxog5XyMaKudb7gDiq5DFbx0bnmQZM+WTCoNTZPEh1SLsAt07RXIKOWAZggGRLyc3VIdfSkMHM 6INEMYkw9klhGgOYKQYzdg+CnNdaEDfd4DR9o1qPORq8RwcJTf/KDLCigR0uSX7wSE5Gt0anJrYe 7VAHvgjperlhKthKIT9oM2hBhTmvF6DZyuh1q4SOR7LDBgmTVxsbUCxk/PABKpI5CfiH4KAie0tb G3oPYYd2LOSyhYorZbNlFZfNZysPXyWjrWi4Sk5b0XClrLai4ip5bUXDVTLbioYr5bYVFVfKbssq Lpjf9mstfdEMt6b78jlu8cIrZLlFJ10+zy3acelMt6jC5XPdQsPls91iwl4h3y1UXCHjLb7dK+S8 hYorZL3FKnaFvLeyEFMMliDSeyByWNg7xUEUBz6WyJ5hlnXZNxqGnHv8ICwbju34qpbvJTdXUbpU Fb4E/IBDSUJIGNEsIrtlVEISRuwLRZiooGOWoCzCLexqHTKEFm/jwVjqqNEIvERjS1KyAwW/GCSu 76IiYkLnoLdXSIiXKPbmxFXwQgaPSc28Ru0HYLtX5AuGiqtkDMbWevmcwdjfS0LWYGUvEPagBE6j bgAlkRDnsDAPQ1OJ8XWqQqkKJA9rr0LF3EhyVwbckXCoR2hKBWt8Sbh0eno32IZ4eohwMXcxNFwh e7GpuGz+Yj2lXCGDMTRcIYcxzipXyGIsKi6Wx/hrK32xTMao3hVyGUPF5bMZ24nw8vmMMVIuBzCn JSNJc0MGyxra4dWvLhxrBQgD/kFWdE6KXHAu7UqG3uCMfG2RvQ0NSYOFMBcjHxuMhE/NJPTlJeT0 ZUbYejgfF1lVbZtbJ0RkWYjtknHQLWZWhookyUryAOoLFvZgvNMUNLxSCCsZC93kipDBpAeCRBaC Hg90SiuY9KBBI3BIjmUwI2dzvft0uVY1F6uApbMi1r4sCarJsaEZ0AZAJFcmeLbrmkPqaPQkGZoV ijvYsY+E2iy27dSrFqbrYLnap8Iu4/61RGhoO/wy/eFKosQVpIqiYiUF4yquxhW0jrB6Ia01xbor i6RypcnXBasMscUPOtkHm5NkIUsClzQIEW2tMWWl64RFj676mvK0k0N/7QikprQEq7wdyCDHYOym /GVIjmAvoVt1RikIOnpjFOMJxG2LZJTpcVzSPHXRSYObWkhoIeEhQXZnecsoBZqeBV0AvSKj5/o6 HK7hHsVJpatoY29nc05OjUB5jj5BdypcLjcU0ysyd+tyfrXc3abi8tm7oeIK+bvNSH75DN5Qgayr vd37O86lCmE/oGqcLE6EKbem+pDAR4t9gvGEBaWrz2HCR9so8OCuVTJzdkP4qCj4vjSejKCv4qNc nQC8qcoPepDioIocVginqcih4QrJyKFi3Ha8/KAmTnIsDWAWHlIPDew5rsLajLH5yiM8VHcRmHEt ypZ9Uw6VYAdadcnpQTq5GqDnlBWLhcmCy5ZyokPFFbKiQwU+9k5scSqUU03NRMtBK9n1UGFQT4lm kQHpZMqqUGdmV11kK5ieoSKlXusc9GTKsSuMiqd0cTEh9GRcg5QVmtyGtRKu4H0WHlEE1ar52dUX viI/O1y9Q4+8whwuKqXZOMF6neJTSNgNWt3xhtx6i4vrNF8wUJZ8eXY6s/j2JcIF2u2qIg3I18vb rQp7IS93iE8UofcQ5tz6rD1mrcUIME++zhWNuVmZKh4qODZTdGs6yKIRHvI9+R7Z5l30yk1PYQ61 El2H/NlIXkkxD7qumM1uFYM5vPd6e0i+BuIm0HdRYsEeCsiKrzJyhG6YhsF2sqhpOSk2PzhbKpxR ySymrIcKhtHwD1nR2BRSoutgMLgQgw0GXfLYb9DUQkwEHG7loWLcjLBqVkKbJTL4piGL1PFrSOaX COmhYiV9/Wqi+0VSfFNRsL0NQ6XQTw5CzTzO3QkmoWbdlO7sdNsExJEaIrd53jY1OUBEal4WVmQ5 mZzygBwNmqWCMwE4FTakQUvpAUzFcjKBlWkHVqQoQEOQVSJbSgYSxqzcTAIs4IGOgx5XyK1amxFC 6eV1Bm8ZZ05MyteENOhFYy1kqjS4RzLAiJ2JtuOA+LWsKbS9xGoqMqlHYu/mdEQAJ42Rpo9XTvSJ Q2yx+ZdBsVcZ4aBJULrQkCxhtq+gJzoKd1jDglFWgg1/iiHljM9ed4WCsH6KUUO8nMakMD9Vwpeb KhY66xlDfogZODY9+rNQ8XHMz4+sG7SuQUVABBTl6BBED4H0Qk13UMHmmmygkz0XzSBTe9EfAE2i S0Nfs6dnY0q15O2ahdhUZJwVLKt60pj9nrPheAuDkMvVKOQ7hargNNPILG8hD0nMULKTVkCuko3z tu1aDXrQJGeyQDp7kJhTBmXdf5C4nYVNPFEKchRl+eA8NCjXNqWG1pmdQCpBleXtslGRsRXnmkke 96gsmb1EKAEBvJuXVMHNnaIY+AflxkhOXV9cC42ZSDUPCmWtrjwoyVni9c5IO+lsIBcKiqdCsKDa x7m+LRNZzPJZ8Q9IvEITRy7i9XjF9dWqafB/UwubLWCBoxdacguvoaf0ioCjw1BB8zRvIg6rJfQW nRWwJqgLh6Mmhzpdh2Y8lF+HY456JPFVu1pqAq6cUr1y+GuoiFeqklYi1KiJHkwzqQcZBAnV+JU0 2hMqBhipaGGCiqDIfcmSMSCDetEFaJC06lDRU3TPID8gnofY7vR8rXE38s0wsV22W5+uFJw6yA34 IXsrnXX/icnA+AtJhqoK5eihH4p9pC5lfaGebJJygrNs3KfaSoyXbt091B7N6O/SabD4AGGinUiF qYVzK3UMbWyComL6oYDdDrsz5Z7VryALuSpWq84StORKLd0hvpeENaets5fxwWHDVPjecjulHvFD wQfo1VM70cdIyizab5vQQwJj90V5D9UXxcExISo/IdIN0R85TICzkVRkI78w9mwY6yziLnszuJHn YiZ7RC3HlvS6eQwp6A/gO+IdRcxt9cDNJqukMedssasqYLl2yJRB+4Gmq6ctIzsQL1drSW7mdvZm i6Zrq0G/xf9ClXcR+6hgz9iCRni7uo9GX/BDwo4Ze7HvBFs8VuX/Eg0rs4WtzCu2IgeZqKDVqqjt SC0rzNneg40CCwUFRgewETdAKvpBQjeE/EKPUdTqTmkiskZhFib4Ml6Q2hWFc3YpRQG6ojPDdTIs 8KpcblitVmR+W5kjbkU+OVGxMvvcmjx1SzntoGI5Ad6qTHmrsurZ7rEyB9+qbH0LFNMbpiK6Tl21 EWHZ5FWC85VBG19YaQHj8Q9JzoN0lBCDC73QWUSz3pcw4qizmdBLDTWJxSiVBuBaSYV+YpRorzmL ReRVoB+KmLUoWhtOvGik5WTVHcDglHM92EazrjJTqRxYRhXg98ri2RQVmumHLr1C4iIqEI1OPyhg jfQ6JTHIdrWOwRKy6PUfKoJEL4kXP0GDgLyZMCkK9UUMDRmYZk41DfZDUmNAROIPEhYBY6XY6SpG 2AK2EENFh/AoAr5HiROLBjXvOqvZEpUAaSCGthX8A93s9scHp7Pr73/sutn24f7R4dnBzuzk2dbR fLZ/uDO/MXtzLPX2+L/xn6/eGP/FZd2DrdPT+fHB/bPTvd2D+b3D44dHx1sv58dNeTAfvE66v717 sPPw5f7jwz39+535090DlVy/f/z01mzj2dbx6ezmbOPw4GC+fXp4fONaN3ufKOH+ce3s2q/PhF6O +eO+CyesLFFd5zRekakD9idioeLJnPaD1kk3BF2NLCVuh8UTYceyzGoesqIULxtQEJKypg/ZqHod H6VpWxgkYpZAF2pPKhITt6F8lEGMOW3ZZKt3QiA/W/JKH5YqQLFf8OD7YYBJgvcpaZYmkSRONopC lx4Yij4PqXXX5upepAylK2fV9Ztk6+3GptyY3X54erx78HR2/c6d97e3z/Y/OzzdorLNTPn15+vo Mb7rRHo4Tpv92cbe4dnOyWT6yNz57BrFwTgiE+TsNB1h/gaiFpz9fjqh3Dih3LoJxQ== 1PydRMUUicgDM0sSlDCj4hMCMcdbgoZygf05c0yuUhdwOPqGUtyMo6BgqIxjNJFQRl191CvMRJli +yC8Sug1FzCh2HKMjXiPxZxfQNdArYMg3nyLMxXf9HgLcIKh5RWM9XqvCjheV8sK9lhbVlS43DUb 1+48JjLHzw8OtvbnO7Onx1s7u/Nx0Sn9De7uQj3v9MOmf995eu3mODT0f25GUR90caSNg2Im9Qf2 04Ro7dLmfrVvj/pZTyEN7lWPDp0YWO5sj+Mrh/bhVW8bxIlwZ/+ijzCQbfzA+AkyGZbxSHn+EwST JrPEne/cJA4DII6usUmPr/nZnTuWdaFX5AJvN/vgt+oHQAthq+JTlGuEkhaDkAtloSyxyOjxNsux 42sqOwyE9/QyNox3GIVU/U7IwntTUIUcG4w8FT1nw3KNeFPFPmdlzlIEcWCUvC65UcwMDHmMRc/M 7LuSqUxHXqcgO2VLII947kHjAdD/codtr53K4SJTefwMHaEhHCdhHBuvv/CH08fF5k7mckgXerbv JBSMJ/PAl630yvclsSE1E21sBEXSdq98NutZefrsuKbR5/GKZ/krSmk6wS/WTpt/dYZfcgcZ6K/f fnp48GDcpU7HjermTRHzvtL+cO3TI/olyy8P9s7Gf99//LfxqHLt+vs7h4/nszvHZyfPZp9sHWw9 nR/P7h/vjOeh83+byY8bW3t7u+NkOnq2u60lHx0e7t2ehdnR6ewzOpPdXlH0xuzmqKItH6n8vb2t 09mq8pOi43lvLMsq1r5g+sBAD9x/sbU3LcoqVpT3HSrzStWsInSL+sfRvH8wnjSfTQqP58S957OH 28e7jx/vzVGWVax94Hj7cGtvPFvem48/zo9Xv4BVrHjo0bPdg/OrdO9sRyrCKtYW+/hgrPcRn5zX 62MVVPqTrePn41S5SeP/9Nn5Ffhya9S5fbh3SOUfSUN2t5/Pbt+Y3ZJJO87yyZT9nqf+mqEdp7jM M55i9Dead/yP/K+ulN15Vb3cm23CyosH+mfo6J/I/+hi/b2/uM58fvH4Vy8tHde18R9t8ff+2rDQ 0bPBujmP/6Fq/EA9XT9dNLjnNqdOe939QE2u6x2/eNzsdX7dpObevGCbv88PYdX3OdZtumjRHBlX aBwjpOT40MzdnuH/aZbcnnHPuSt/JOtrtbAyrq2Z/5fVjJbftdXqf9xq0UK/ri61JnSjJPhC8nxA 9ww8sT/clm37h61os9Ws7bv04/bddD9bW6v849ZqunPyprm2akNbNXLIZGKU+G41/M5rTZFfxuo/ PH25Nz+5dvv3B4f/OOC/jCfc6+8fkC3l9qdjXWdvXrv9cHf/aG+OX8ns4djaof/67mkYbj/YGusz e/va7PYH8yfjfxfev/Fs92S+N99p6vD+eAJ/YXW4vaFmxXu7e2NfyzOjzpkUEKlcn25rkTdXPfTw dGscnHMfurN1srvdvObwYOds93RNaWrRAzI5Lj84/mnv/De1t4yx4Yenn823D8dD/Q79SI9r62cX 721O5yJ9PLs2u25KyFA2vvvOOF/Hm+fJ/O6L+cH9nR0Svz3jiszaplyqtxfaL1/M/SdPTuanNPOf 3eBW1Aeuy2/0062t3aNx7GWejwXmOguuTx6//Wj3dG/+qp67OX5Nn83HVf/64ZOTU2qhV/v03w5O j+jvPQrs7+3ur+uChdY8PD0+fD4/twM8/3nv/rGWfdUIS7E6xmRYHIorvPAH+uISWVDp7hoWTYuY BH55ErjFSdC854KNlaG7d/Z///dyvEGcPF8aOf7p7pMn43q0duhwGLjgsLlbA4bls62dXbpJrazr f840vRX+jSeqG3T7Gv+zZm6Os/k/Z3b+d83N/t94ZmZxyoTc9dRbt/L6+em/nwn6v2H/CQ57v+SO s4PT97Qu/W/YfwLDzvRcFKzCgx7obrxm2MN/zmZ0K1zsrLRY2Tt784OdK9xJ+Pna/wTtvdC9pHZw 1fC/j+qn+1FlATR4cld24tcjhOi6L+s/55jnL3EJ+SGv/ffrCtf1usZxbON3t8Bc1SbwypH64Pjw aPbw2dbO4T+Whop+k5/WjtTk8YuN1tg3HsP1Yn7MX9nQQbKzdfz8hhzdpYlHW7sMLVvRxzlxnvBA aR86SVbBAZDxKh19sr13rH3MH/72yfG2Voj//njvgDu7bcazw+P/02dE8Hjv7PhGewE5PNra/lct 9+n7X+2v3b77z/n2GVVivXmwmRuzh4dPTn+CZsIfYWW+pA3wu6+8Pw2TJ32XFJBJzG4DZeztiCfw f+tf7bDwvSx+2ovfw0LnXrHQhcVVrl9c5caV+Cew0F2sG77/Ze7u/uPDkxPyFu3tHvwkfCHfxwn8 RzqzErpLc3x35xglf0iD+aPjrYOTJ4fH+0vfv/2y9vNvnr3g4Qdf9imeVDj9SXvmODjb3zg82p2f TBa7k+2tvfnm7oGIb9ont3/4Yv7Rtw9Op6VH/TuH+7v/x51BQBAtzVrG4vPj7fnB6fSR+ZO98Vj+ 1eTkQtq/gPZeK3i0e/DgcHf1419PTkLHhPmef/vB/Onx3Noz+YmO7FvS/sVqftFW0y204N4WRwos /fJF88uPcFX90T6UnjZVOuE6L//6F3wrP/5u6RZ3y3Cpq0KgvERMoEL/UasjUxj/CDuoW9xBG69Z 3UPTcIE99Cd//vtxXd7/+aeLj7aO9w8PXs42Dvf2tp7OfwrHi//dob6nreN7vnhZbIIeKWZO9Dnr P/r/PzYxCn+eHf3oN7If3NzBWKeftHX7hx738F857uG/fdjjf+ew/9d/7um/ctzzDzjs//nHSoE7 v//3s63Zp/MJivi/6FhJ92pPyW079tTFfrZkgEIwOBFn/iD36h+pmT1lgeBm5vOa6f7NmzkQ9Qo1 07mhrG+m/4Ewjj9SKyOl2ORWhnMaGb4voNy/CiNEbFHcyshzd00z+++njf9GpsALdswPM/j/fcf2 H2vponB9Xbrc+lGN/x6j+tO/hP9YGy9Rb/PGW3JYP6zp32RYf8hR/Z89+7/g4vHHUbp1tnf653MD F3GLJefMZ/q3tRDhFfV2awIYOajy7sFODal8ZVzmg629+XjP5ko8eHzNacTn9T9+Nv56cnrMjFZ/ prH46uTaovTag+2mLde/fLZ7Om+ERGY29ux4NWpLkifoeY2DnvxE0LbrH3I8/EQTJU2hn94/eTaR BhI+3B/XDRGzA9GTD4wcYfTjJlkR8GNkOB3FAGX5dWPr6Gx7e/fgUEsE8j32maPceD0Yy3xyuP1s qy3Uk/7ByyX9VshWSH/3ygpAf3jO0cEns8/mOwu/0k+fnT1+qe2pMpSUnlLpg7P9o+cULa6/2A8P xztu7RTRLj+cHZw82z2ovWiajuezr+d7e4f/qDWqv86Pd3cOT/WX5ofN3VNyZz48Oj48O519eDyf H0wLaWt/t7WD7k7TXz6hufq7s735Ef/urLb6+939+fHW3k77IyvXnx/Ot5rXLob+jiNJBATzrYPZ nb2zOcpgZnKjN15uTR+W3z7a+sfW7u7Cg7fs50f/2CWOhmen09+TFRjv/sfjkvTpYhmHAh/M50cz qr79KI83Ou4dz0+ezTa3xtWT6XNQxjUNONqbW4+b/P39+emzlyen7eTSnz7bOnk8H2tmE6zti0+2 ns4PTmXG3iGeIfl435zJ5zrDB9yY2YjxqSM+omlR1YBl4M6zRWUzRkDsfQedeKJW7uHpfL43DiBB kLAzrFW1ULhq4UV+3C4+G5fNx+SjP1fNYmnSg8F++PzlRaySbXF+/MPx65qN+wf990IKJg+0K8X1 D/cOH2/t8cIiOwatnFU2XSjwi64Wiw9MF5HJE+1ysfjY8lKSF56WD3bxuclnzP8/0cjf6cp3NV+w mzw3/cQWn13+AB/csZ0RG+B3oSrYHPfAdq9f9mMvmyCXkHQrEMQN58DSXs7vvAzNwpRJktT8P+KT 2no8P/n72Xx2czb+MK4ix7vbTHLz0eHZyZx5Np6MG971zfnWkxvreUwXeCkXaMjkZesrrd36weH2 2f64HH2wdbpFXGf4O9OcTY599PevPtn89HBnvvLHt2fX/7m/dzD+fHPc98cd4exUUFnMoHa89eOo +B70N6W2n+3u7RzPlVYUATv4lf51+vJI6Wyv//Lg5NsX44Hj7YaetC36Yos/EC5L8pM15cgFozym MxR889++dx6P393YVHeBzhk78eH89FPuhlf3UFv6zX9tGw8OD9ZVuW3f3uH2c6Y2eWXbUPJ7Gv4r tt6d2/oLjevu1uO9+UUm/itH8l/8oW+fnZwe7v9Qn/q/0yr21osLN46KXnwq/3Dz8K2TLTIL0J43 Lh0XnY4/+Hcx1uUnVJV/ebeMB6OtnXGIrlqPcsV6/HxHz0QXmedNYX74j5/Md3bP9sd7wcnh3pka dEwNkd7P7Mg1dvrZERMPns4P5sezB+PNdH46q1ubwZH5Of75+MV89mj+z9PZ3Z3d063Hu3u7py+l cEPCv/SOza2Dp2fjWXn24PDo7MjKN8rRjNnzg3EPIrvD0+PDVxTdHZu4dTqfPabb29g+rXQNQhpP nbNP6LY93o9P58e7/8e2rKZv5InQTZ64f3Z6NL7//GeaKpXZ0dbR2H0nu/tnew0rvLcOKTOOkTja GufI9suxZeNF70TjGeq8pXLjofvx4dbxzozJ3OT3wVMiiHVlZn5sP+bOK4s+lUvahcoe4yQQB0pV srakayrwyqJNBV5Z1iqwuCOFiPE62trZWRiQfQ7Vnkzfk6PD04VSW3u7ugMkjNPO0e4t7Rqg4A/3 ju1Le//j2ftnp4c2L+bLc7ObPbGP6VCSSsxOx49FX1QbOyl5zApvvuBr1my8xG4dbK/4AFcpP2E/ ysn5hbf3do84K8be/J9jnz4dO/IVTxzhSz98MT8+omucPtA3w6XrBq0rfzjbonVgtjl/Md9Dh91u TPYLQ7ho0W968eEXH9LyIiSHC7Ucf6MR+P38+GC65Iw/3Ds8OH1ki2zzwwePPrix9Iqvto6WdT94 +mS55KP52G/jIrP8C4eR0Fo5ftcYr76+ly/ytUa+/nL3YPuwLleh/jAusNu7J7Z+uOaR/cfzHZl4 S79Ryx+ePR5X7lNT+uptwM/G+Xze0t+uolL6Q/DEbx3s6LJ63kIqD1GQF7FW8kO8cSw+VJc/eeL+ wpy7yJZ298HDi+9jVHiDvokN/SY+W/dNSFlNDzN72H5s3dpij+yDd+2OyEUWmtauCFJCxvj2F7IW 3JmsBZMRkeLfdUjkqVePSds6GZS1jdMZuHm4vTUZ09XPT/qwbT6XOq/1ixrXj+Crlxp+6e16Fbj9 z6Nbh0c7Z+dOuM8Pdsfvdo55t/B4PZRd//zWw1uzL+ePx9qNC8fO7E/XH355/8Gfbsxe+PPVbO/f Ojo+fLK7t3AwWChTMxqtbcrJOQWOd45Pbo2HyMd7851XlHpydrBtVZFJtFxGP7sTfA== rue3kZ/ZOjjAhlw/5KVScuWdLp8LXTF+SvPdg9Nzuwub2fb+y+fr29sUPBTCFpkKjY/3vJE73KN4 0XGmTBadpbecnO7d2hGNvA7Ye85XT49p+WaeXeCZox2aLHsHF67U0c6Flcvw2BOrOvXo6HgyiuvK 6Nv1WOj8qslG5f6xu4NDQSprSz2bk3tO27u21O7+eB+5tTd/YiWJYOjcwqeHemoYKP9ZPL/wca1E yt35ZR8fnlofXd+cM9/1uf1Pj9ZBXal9e6HD1hdq++scVYfMQfVKZQvFlj80KsXXofVl/nb4eJwT J7tPD7Yme9LKgvxhPCYM1Ss0csFmeT233NbJ493T/a2j84tKmeOF3fMVHw89OBm85T7aO37FKk8l tg8PKJKYLjfntJxK2jH+sXh8eUVNK0sf79w6PKYjxSt6ngo+GbdgxAHXS9NiqaPDk92JrhUzh9/6 9Na5U1XLqEmvia9fLMWh89D1ynIvzm/jyfbR3vbLczYYLrN9cHLelB/LnO7u2el8ffvGcdrbOnp1 P2i5c+p+9HT/+at3eS51AijUK2cuF5cFvX5GF3lmnPKnFCKvNSHswqoFkYqOewGdFKcr1+qKj217 ZeO2jw/P+Ya5yNG4BO+SB/T8YscNHOpVLyUDxuOt45NzxrG2YFwxm33oAoVPmya9quzxK9b2ael2 I1q9v1Hx/a3j5yfTWl+gsNX6AmWbWl+gdFvrVd/ok4PTWzt75y+oUubo+MnhwXmrKRU7GS/bp+uP pUcnY7+YHWTlHDkZNw66npxb5GD+dIvil84tRGadcfs5OX9OUrlx6zs4X9eeI21bp0sXx4VyJ8+2 dubH83N6iQrNT+lmUO8FK28QR3J/qKXSql1kvNJMrGJctVWljhd3Yr4zryr5dLHkmnK6x54uXXtX lxN73Pkl93bPWZD49rZ92Bgd2fBOcLr3UWpG99sLXXVXX674jEMJ3LYOnp5TVyp28nz3aDwzHJxz caJix+N8Pz6ZH3I+uHNL0kXJrGnT9v3u8DHhUJrWudbGfnBYrZGz3QNJ83uyW3Uttb5iZKegE3qn gFHImoHfrt0meSuhHn3/4cbHH+fhgzltb6T1jXeHD573793/67vdzi8f/pb/+m756Bd/qz+EOznk +E3c/+Y3N/967zB9Gbqd5rGPvp1vHB+/+87j9988+vR3v/19OXk3f/SbL2/dO/ym/+Lu8Z++6a69 /sE3975+dO+d99/Zdr9+Px0Mr23c+EN/En7xhzfe++Lx7e72G5/4/jd/eOvt8N6j0zsfPCkfPv/o 55+9s/XBk+7rd+1X/8Y7n8Vnr90IH73z2s3bv/rstTfeff6b116fu9+/9uazvz289joJ7t0Km2X8 wztHr+sLnp2Gd49u/OZorPLv9rXKW5/d0T/99XfvcVtu3T4Z/j7+6eHRUpGxfSf53sEjf718/Ytr r4/95LgF92uljv908jSPb85nb7z74Wu/7E/8ySdQmz8MX7798yfjXz/cG5/9+gO0efPk+Pjtk2+O //z2g/vd7f7hda4rv3R8i7z2Q/en/qtnm2+ufOmfn975aO1Lo//b7dfWvfTx8V9uv/Hl+Jbpa/Wl n9658fPPj/Y2V7305Od/iXfWvfSjd/+QDr5YeCm9hV/b3/jqjbe373+y6qXHZ3996/qvX//Na39d 9dLuXvfeb9a8NP78F/ntJ4Vn8oq29l//qbv36M4fVrb0Z/eO3nr9/u4nn6186Yc/P9xceKl+L/za X/1us/9kXQd/fvynbf87eumNpe798GdfhteH01+Nj/WHS2P61i/G0dfXPvjVrxZGtX+UPtzjl44f 0uO705f++fjPXzz+bM1L3/p2+Hzn6e360muvN6/9y81Hn659abr95OGvVr/0N6/dOD55642T1S99 kP4yvkXn71JbT3717tduzUuHZzd+dWf+4eqX9jf+/MZv3t5vWjq+pR3VreHnf49nn6x6aXfv93+4 s+al8eevD3l4b81Lv/52nMn3Dh89WtnWn334i3d+uTl/9vnKl374h/zFuu796Jc3X7v1TF5690/P 741zrO3gn904+dVv3+QO/vXSSz/6dn/4+6+PuvGl6WjxpZsff/pnfenXN68vtPTa62m4deub+tpJ W7+5023u/yGtfunHPzvLm19v55Uvvb83/6i+dByX6Wt/f+vvR2+ueekf3+gebv79bPVLfx/+snnv 3nuvrXrpOC6PPt79eG1bH34SH/113Us/6L7o/lJWv3Tz5s8f7Xz767f5pddeX2zrF39552TtS7+4 Pv/2aN1LP+m+vPnenVUvvfb6+Nq7b3z523y8sbKDv3nz0V/WvvRvP3u0eWfNS/8Uuz9v/fUNfinN sYW2fvr57vO3Xv/0zZUv/ctfvvp27UsP5+9df7rqpddep9d+0v317uYHqzv43ufuZ1+d/uHjVS89 Pv705s/1pY/DjYWP5o3y67uBX3rtdbf1s9MPp6vSW8dnYaOjl7659NL771z/+1/ufvXb8aXvHC+8 9I23Dr9+U1/6vPy6vnRck+m1rz/5489kK/d3vnYfTxeIz7q7n/7xQ3rpzeU99dObvzgIbz8YX7px uti9d+/+7Ra/lMbl+t03F5bCX+28oatS+MVbG7+fLoXzN97Jn/6RXnp7+aXx9Z+98/VHH40v/d1r 9aXjW/gk5e/cfyZtfe+tP9xa6OC/Hb5z97m89L3PNzen3TsO7N+eHfKeOh6hHmy0v/rT/df8WweP 9XSx/PvZL18LO/tHq3/tb4wfzbvDfN2vx+Nk+GS3/jpdLfuvH3R3f3P/rvy+dBb45p1u87fB86/L C/w373Wbn73Xr/qVZ/I373ebO7+P657e6P4/bd+5HTXSrX0FvgcbMNg4qapUCmQwNslDjsOAAcMw A2OCgXXO+fNd+1fP3hW21FK32t2sd72z8NNSqeJOtcMfS8+qvl93snsHtx72/bqfPdr+/NPP2Ojv L9ezR09PLvX9upk9vvLHSt+vNnuy9H0z/driL0vZ0a+l0v8+SqluZk+fLF3kX9vHLH95O3v6ceNy 1680Yy/3smen6qt9b9/NnhU7232/3s/+PFm+6vv1U/bq+Z9nw4yN/P5Xmb369Pd636919vrJedP3 65Vsv9iv06+tPbZ/pDbP3rE9b79dUfUb/UfPr+9OqmunX+/2zti7R+rOgxO3e94++Kruftb/9vz6 flW9+HTndPev9vWXx+cv/Pyzb8b0j/tLZ1Zv36Vf9ZlLKzebv15d2rx55RL/2qZ8+ud/Sxfy25/S r27GtjfOPpQa2Mr7x2vXvv64y2SP9bN8/SGo0jW37z5c61I9vXJ5WS1f2fp5Znv38eXyBemS1//c ubC5ADTb3b62ebC9fW3rzprU394s/4f+GP6e+PJJc4ZUQaJy0HNeJsq39Uf15Uy2dfH5L5yMl444 /n0hrf4fJ7f+vfhu1Z2iEzs/qgfn7jcI7tEJfebi/Q1mI9BzBJWXH7X/QM/52voo1oU+m794Tp/t /OiJ3fdbvR8lPafno060dXrOWymPybHmL96M+eiNjVp89P3p0yfTR0n6jx819FHSkvwEQ/o/Hz56 47/GBJ9YkR/NH51KH3X6oNrs/ShJ/0IeM62xQvr/q/uj+YuXvR9103uoWx9dWJYT7KT/3o9C+n/f 99EP/R+t7j543pDHmmMlmaLno9VNyBT7fR990FrTheWtf0+eW/cdoH/5nX5uZPW7nzs/4DmW+vYG tZiv3ufnmFrovaJpEGoc3N1fTtM+83I7WkjePrxGMhwTlzC36cRfUetP1Hr8z0uprLvZxqR+k6fp zdoXNPAw9uEBdvL901/Rve1kH0sWouy2XV6m/2BBn0kh2H/gXuzNdeh+u/RIy/a0sHypvvHkvgNO L/v/vH0uJGZvLgsH1z388rraefXjhhhu7LKTnnaW/X/W//jKcxN0sUCO0wjcHtxuTKCc+Wtb/3y4 voz/uA15Obs1vkv0CPOXnk6t76zzf/x8qi5L4ANM+a/xU76wnGbej5D06s7x3V+aPD76z8PW+jU0 PlpBJyf/0bWCcv32f50NnWedpmt8X+MSm2CHmbyCPeM7vzZgfy40JmtMY+uzbPYwFt7uN158m8/O yv5WJ16kecfZP/7Mx+9NODkLAyYrm2GyvjUtV282v7aIj/vy+rfGB+K+m5L0QOZ3w7ghmhDGfkF6 Vk/TvuyeuxfrP8f3xvMX+o+fOzKcdszdzl9Pl/rIdvepZMWm41Q6VN3Zm3FoGydbQ4vr0pjq7MP9 zdN8m9Axy2649w8nj+o0jyqNpbndX+9kH358fjbrWn1LHIJPpene6TfunG7J6o1lur41YAfStOC8 9E/Mfj+Xzj78fLLld07cyayfdO/kG+9+zNBYk+WrbyOn7p3+zvrLzOduF0akW70rSbc8v844We+P 9UiVVnqo4Ntd/erXtTtxuD3Lif/4rrMZ+kHk+40RNqlgo7H1ayu+S7Jfa739yv7e3nzp719Gh3nv QZcUNm5J8u8jS/K5OqJR0e1bN60dSnrcqJ7/6GNLLDEuLI+VGdP63mhT1TZbGre6Uhdzj7+/od6e OnNzDtLT53op7d7GDa+YrIvvViZuufc39LU/69vdXYq9wX/Seenv1MleXpmWbvz6eZnfzejnU2MF i5OD169DoPMzNmAFW5OVfXi7/2ToZpB3r92Nffrw9Jg7S1qtfWNNhnK8xripv898fz63GWvKdTPO 2N/nVv6c24yBph27MW/XCnaYn5e+J8WVtvDCsr72/HUvGZpGOv54s1cVXFgeUSW6GfRN3LDcHKjY tCWFcCqvPf98Yi6n8ibuQO6M3WMjivJq7+yYU+fv7A1SlN3ceDvMSH+Gq32dcpSbm/3NSTRZyBR9 Y5lEFBod6db30ZXhWktvRyIVSPrLMeZED+2IWJfRrow/9m3N8Nz3bgb189IPnMpeftelk9O1ZNPJ KLyxQV1K5mzXm0+3HBV4uzPWQtL6QI9RQ7/68WWCUWOhRT76DsinW5PEjnFdklqS69TPk3MhALda BKBP3x9CAD7dGkoAFiZYkvSrn2tnpqHYnV0i/uJ2wgRZob1rvSzf3rWXV67/VGevfdptjY98rqbf VP8MPpD+7CetvL2Cl2789X3myaKpcmOZ8oiPmazeA97BK0cnq3nEN0eP+OFtOuK9StrC6Ad6rEvm 1LkTJ6ayJaS5S7zy8PYYPW8apeKyYjPBZAvJZJOsG5o6M3RovZT/8La5/PTxH5P04XHmDXOq/p61 9MoxBo4+6em2+8rTrwMGtLDctVpi77Rk6+ntPpfV7V/wh5EU/ZgTYyfZ+to2kB6Lze2x9pouUiAs DQvLbWH68rn7P1vCtLn8ZHmAMbFflE7n5dudpjB9nLm7/EQtd/XGfWVaRninLQl37wjJBnvPy7c7 TUZ4vKFdXKWhxTvxKahS6kib+fXt84XlMTv93IOlJuc73oCW80G2vrEE4M4Itxudlg== hUET02J0nRMzTpYNfB+z02R1PbMzSJY947588ky6iuWdvO3QlQHm7skq7PNHXbcTXRrfWJv3jfuH 03O7aIHvaOx49tauphaWZz58ODRqEE0eu1exaqsrs+z4tPqrZ2c9OdTKWlcr4X5/inbWp+9N+y6J 2tmYzvbfw/eoqc1B0sWwm4rV1VF58/njdMMQ5LE20Rhsj3ONTWY3CwP1LvRszKVP9x1fHP3ourw/ rQfdRAnxcxxFc4qLXeWdfDd9xaHnBghyAyjak0TR+tZlCEV7+nUoRZtsgUdjs1K0qFe6xuZA0X58 NnM4+7iIPwYlGtljo94Px6FoaEVQkMa92LTtbA7tTf/dK7Wz1avWb/3zde1i2EXdsoC0WmPJ1sZd Comrw61OKcU7evmjAo3n7IhtHOiQhZh8AbvtfrjVSYSEND5ZMnv+dPxFbi+R7brfd41NLdX39wu+ D713r0PJzItvA3TphUnHGauW3JqOSRT86s8s2nMrfcpc09ozuZ3jKdQNCwnaGep6NP4YclPxEA70 HxvLDd+euLHW5oVvT+wJnaZhtZ6WGz4b6n00TuODjjUfaxbtZNfYvOT7v7538cIOG+z4jaZOTLC5 DONib0/8MQcu5lpp31gdt505eBBRO9lcRqVa+v6xuSEWbGOsPXl6bnhuZb3FDYH1iwHSD3YAN3Qd eflzkOtUcsNwo+++SUTP+hXSxlSmA9l3++ZUBXjaz8VWjcZ6z3aT8g853ftHgyTdxn7pn7FiPsql W8mnG1N4qfUQ5udjTde8I6JX56BODdwRI4fL2y1bjElfe/5io8WYRjwnpmBLLZ+r5y/GMaYhnmv3 Gv36Z6nfOtp/vLq3yvZmp250HG9bNDaItXTc3TQjhX1j89rE116cOD3Entx5NzCykhOdb+WdeM9h f/djnPOt3BG9XUp2S+pUv2F4sK9q4mfZ1u7+2W7Nwq8BJ2O598+N/56+3b9+8v2vnd361JXXu48v 3d/piqEbH0HXlvqOG0Mn44BGI+hS9obZYujGR9DRbfUcYujGR9D1RAtOHUO3NjaCLkYLzhhD1/NR H0GXqOVsMXTjI+hStOBsMXT9H0UEXW+04JQxdOMj6Jqrf/wYuvERdDGOb8YYuvERdGwhmT2GbnwE nbhHXpmoSL683uXsMk5n83FAHT7w909/H+/sMrhL0TjQp4k7aWdQeGDTxNTncirk5D5L/svrTfl3 8jz1W3rvn1mazzw1TUxdfkpD56nF6Ef9zBoKV8jc0h2G13DXGbyfupoCfxm/OQePb0zcXJRhGiPs 7dTEmILuLo1GPrYvcyZOem+XJluuxsxTk9YMCpkb8VMatmFf70zlCtITXbvz171ehXsqV5AdMhoP sPQOMBu/3hmv0S4MsVe5of11crIa1m9XJ09IBLsNcwaZEOzWZy8ebulFsNvgC5eWiUnEve4McAaZ eOHgpqXDFSRpFoMUEdlYM5phrE7DMn+jsVY8wzv9tSVEtIzFXft8IE1+p3+NX4PBIaZvT+yfWOj0 xBoQZNo8fLvjAxhxLzaFbg8rpJ7ecNaYsabhELLuetNMcgMTszNAnBhwY/X+xhjO1ogDmxgFVv2c Yxzf61/jOdI0cXyTZK+z0mjV6FLDB/7MxQ+9QTADROlGaNo4H/h7DztCNPtjoyb5wE8Tx9dvPh+6 fimO7+nGzI3FpjZbTXXw/eGN9d+Yt5qKUQNjGpsQbzPdjKn5zVjb23+mGTOzzVjT8MspIhuuTh9v TpLVG2KjO/s9AvbNyUG74bBPjJbri34a0MQkgkNnWw2IfPx4c2ZlL0pKPy9PPN1Bdu6Jorp8enwD C5ObuPSj6UUwZqX7ZgQceVL87MQVat2MdPGXKNT0hrhNPK4TJ6Ptz3+M6ZgcGnt2YYjnAQaUT2MN aEuRDb3y8sr1o5YcqV/9+PhzCjWzdyc75jmV2eIY4XEylkeoq/0RUcPMOwPksU+35nPiMUunJ8tj w+apy7zT2qQLy4PmaTrzTq/lqi82rt/SMKZLIxYZofEN3pfcpWksMuMj7KayyIzp0uS41zHz1LTI XPzZtsggJGmSF/Qwi8zh7QEWmUleaubUuZVTM1tk2DZ+e26OfIe35+BB5IaWr0xveGjdiR/ent0i gzVvWWTEzchUYWgTLsFbFpnO+P3b87DIIDovMNGxHt2TQ80xOwOCc8Zw5KawvDUqLH+7Mz4ONZ1o b1HsE5bvzJ437PK5B8uTPFWGKhrm8pOyP3R0YXkao86dY+YNa+xkN7jVeYSPjbgutPnLsLi6afOG jd6LUVzdHGIgl4XDyXG9B+8MDCE52We3bAXX9RtBJ57eaG/zNljQyDPtm1SHTdgMwxjd80dzydc3 MR5uYRqfumPHw3XcvbrG5h0Pd2wP1ani4cZ4qM4xHm72iNQh8XCDowVniocTdExExM07Hk74XD0+ ZqhGxzFsx8NJLWnqUI3B8XALnRFx7XWZNR4u7uQYA4CIuKnj4Sbc+sp4sZm5Cthb55hlvNhgn0jX 2IRw2tYEUi7o7owWaKz/RmeKiK9Hg26sxscqPRnsCTm5nUFpLcbf8FI7TfX5uKPqFuKni+R6csxc pJ2axfb4HMADwglah5Cs1pfOto/hzl/b4ydwmPOFWwY6hMKr85iRVRNCMbydf5Br8pnvg05OX1qZ dozVdPpi55p2ODZML40jZHAe2YCpndmOYWjFH8JZcndQO4N06fG5bqid4aJ9r2DPFObpSIqZSdmm xnk3uPG1bFg+XmyoSj1WoUYM0sPO8IXp6NizeUakPptfROqz+USk/vV9LhGp6sTGXCJSXTtziEhF K/OISEU784hIRfzasDTQ3dFrzQVL+nXXrehkj6X2Mdw/GnHuAxYPYV9W82HHcGgoXJOL9UbrzBgK 17SOIn7td4TCjc0DP7dQuEE3iTOHwkm9ctSRZF6hcOIrU6Wpny4UbmFIxpLjhcIJwZC0117R8N2P MfrZFBnhmSO/aCcUni2u7nM7E+LI7dtAryo09n389Y8wHwfbeI8BGY39HKCuDZJhXrSTDB/zcoFD 2EYvcDqyaY3LzgtivjWG5fUwh95sWq5TrVzf08XVeeYgY96vUW6Pju/JYuErD0+VVB0ctcH3ljaq jf2ls3fOq6X16w+fLa0/ff1oaX3//eOls4+vFvjXfTy3vbRxZ99CS3r+ufTs6OLXz7LL4a6lGey2 MibY7f5WJuc4RJ35Wpw/zpz6KgugNoPdVt6devi5J+5s9a9x5eJebzT5fivY7Vpxr+ejxclGWFQ7 2O312Ai7G0u2a6y+FvKNoxfxo+1YrDGV2y4svWrGWLVCwB5ceSg+2gp2O//fk7s9H7X/nL3y7Oy3 vgi7/MWLccFuH7Pej2a7r272R9gtf956+q4/wu7tmI/eyM71fvTox8fbJ1sflRF2S3+dLJ70TfD6 uJHeOt1aUxzXDfo8/SusfnX31/vxT/rn7p38MOS5E/cuLjU9IXuePPq1/1lGkWPMI4JoOLju3fWV Fjsdn0ttssttS4K9f/qw7SbftKeydfSYcTTfes1OLavJgDpWV8anah7SJa6UdzSfULHePDnJ52pe leS6rEu9lfImVJIbuHRnTkznczWmLtrEiiMtv74Zi8jJeWo0JfXKAUXkBo+vmRC5Iw98yzF/zPja 7uG9XWLr6LhOTXSmHNAlopaT6scNn6e9/K+uLsXKkt3urseIpuvqoYhInVM0Xc+MzTmarksa7a/F edxouq6hjWTVmDmariuWrve+8tjRdFNFPh47mk4sU7Q2z2K17o6m61I+xE6eUzTdRC/ouUTT9XHk +UbTDbFazx5N1xVLR2OZazTdGN+eOUbTjW6f9zfGxokfK5qui3/EvApzi6brIq2dt6IzRdM1uuRj 6YR1dE7RdF2xdBzNMc9ouq71a1p65xFN1xVL11f17/jRdMe+4Z0qmm5AfOUcoum6Yulmn7EJtXOm m7HB0XTdMzbvaLquaxSm/POMputqYGF53tF0XWc7WUfnFU3XFUs3JhNFXxMToum6GmhSmHlE03XF 0rVrPs4eTdcVS9c4+3OJpusKv+nJQtM7HdMpgK0Mh80BHT+artWloABOF5HaVADP/RgJ3lm53ili ND3uBgbS9ZWp7I0x6pQubk2qVdma/v5qZ75aXad0MVO9uq4CZUPrJkyuVzcuZk3ci92aVLVy8Dz9 02bfEzLq9A9tch1a0aUx/pYDStUN7RJ7d4wvQjt0nvoPc2eWszHzNLH6bGeXRimM61RxDJLZzC5i TtWft5I+FGLfWhrRqP/REDNYb5m7qbyhjl3mriP+ZbTQ3VT+iI2h+TJ3s9guhpe546iBCYXuZjDG cJm7mf2TB5W5WxgUYThrmTtUZZpY6G5gMtv+MnftnTzIC3HqMndT5IVzfOHkMTeD4C935hZn8e1O K7KoL1Z0QED7uQdziOW5M8gXY1LQ4xL9OpuvNdZ8iEfzwuRAupld8L/dGeWVx5uYyVFpwwphYHbK Y55etsG2IopWRhVl1KY7PqNrSEof3u53ljqbNrArb9uGj+0NRTL/vLyhKPp/Vj91RD7OfPjgeD8+ iD1K4wPamTamtiv6ybUzc21XbmX0/B2nTuL0hSbH1EmcT2Ct1yxga1gZCaz99GHCXdLwsK9PH7Jh 8ZWTJTw0draXmPVWmuj13Hv0ZdBUSjVyrVnvte1D/XT0ShfY1IEMvdFPV2bNq4CArPlVMHwyzwqG T46ZIKB19p9+nblQNZVd6wpkmLbGENqZPpBhtAYEtTOPeM61dvbs47YzprRWw1d1YfIxdAdkjP59 jBteJ3uNHkOHzRpP5Cux9ta4mzKwq0ecFz4kQ4/hMSrc9dat9jXuZmSdvsLd7JGPQyrcDaqUN3M8 UaiUN/MxHFvhbspKecescNdRZaZR426qxoQLaIyeoAp3o/Ve5+JoQU4qaRmOT8eccDchJD2JOZPy jqKxQbGwY8WcYOd3jeUzqy5utj90xl5MHfk4bWBttPW125k9sPZZS7Xur5M4uZ3hSar6qeWzsXnh pgtiQubJtnPNbPHtHa412+R38WQ8Axt4DPePxsZXThHG5CPCpg1iohnrjQh712++m0ptpxn7Z4C7 4ABnLPTr86BTOaAI1/Ppg5h69cr9o0F56MYHMZ1b2SQ+28f3p4txdV0aG8Qk8o0PjHF9N3LjSthY wXBheIzrtefvf/Xtkgn16Drrvs3mZ9ccpPC1njXG1TU2NjVVQ4aZFOP67sf05R77Z+y45snRldzf bEUNHCPG9cVYlteKeh7UqYE7ops5BAt8Or+X7B9fOr/n12Dvx9GR/nnKB+ndrl8gtu8x/nNlae1g 8zbC+rYptm/T7NWnhI58utU9/69GaNrRD7V8JM9nsw7bCX2u7ilzd+L0wnJvGN7RrzebG3JvNMvc XdAf+yvOtWrruXVpRIn9OS7275Pq/Wi2+/fdR70fXVg+rW7vH/TF/r0fV4ft2iPx0Q== Zmjaj5P/fBDxcDiVjQm+9P3UYRxrKx5utT8Iz03vxf6Kc271d+usL/avOHnq4aF+3ReE92pcPNyP vCEnt2L/bqy/edr70TMfVsp/+oLwNns/urDsPrt3pnesRz+eXFrq/ejSlVcbjxtr+qEOn6d/+WVY WF7d/vP94YAnV1//Ovwy8bni5PfXO8/vtZ7ztwmNJ+0/ft95Nom4nb+utoTOYJFZORxhnbu/jlrk SN6/JFbXayduSqsdt0Evr3e5TR6vitn9M7s9JqZOC8nZXpn/5fXpXKv6u+TE3WYexeNGW+2Oz8Yz vDLL9QGuVb3m3JbG9/L6dK5VvfPUFHJniko726tcTRuVNqHeweh+6mqKbH1obAo/rbHj66zv0u89 OC7EbSovLdel3ijO8xPd0Yd2aXvz5XzOy/l+x9YYYTfqHdskV6uj5Or1zlQ25v6aKTtzSEf7Yr1d ++n40Ug7fz0dr0svLwxVgHfmcsvzYuO4LjWNYLduu9ZU9jFEAR7ryrrpdYMowFkty4gBbCfsHPEd HTYxU6Zs7LfD7PT6aQ20j31rSH0336jRu513+vskM+4QCvN2d3468jtzYnyXFgbfesMmeNxkVx25 oN1kjUmGP8Bk17KpfK6+gcI0y8q0DYzHdvW+keS2zixn05Vlmyi3UUW2YaGAE/IcTBVj9W6aPAf9 leJOtLo0pTTe6FLT3DkuENBz5DGhgE16f7xQTpKU3t+YWPVmcCjnUVeYTkuzmKKxSdFdsiniyGMa m1hFZ1C/sC5obPKeHzrIAbE8wxubdHM51YxNrKczzYyNCUgbCRfulQ77YwAbN1bH0oiGxADGPCTH igIcGgM4QRqfEAWYJmZ8DOA09uTjV9SLO/lYUYCNPoyJARytYtY3J7NU1IuxoseKAhSMYGwM4EiU Te90zFJRjyj/saMAOwbUGTbUryMPiQLskEyedI0K8lgr8OA3FOVLFdl+Z1G+cVa4+RXl67XCzbUo 38JgojEhlnCseDJ6k/g7ivI16yX9rqJ8A3KpzaEo3wQf+DkV5aP6ldd/zlCUr9mlD52nl2nyFe7P pNDgMXX9xmu5A3JDDarrNzmSax51/TiSa365obrr+k3pbXvMun7jq/odKzdUR12/8QPqtsFOX9ev c5nmkhtK1vUb72Yy0XN4YF2/8b5SglrOVNdvrMB+Zx71xVDXb5JNaaiCP76u33h/poav9bXj1/Vr Dq1dyO0YdsvOun7j92dXdYbj1PXrirqbg4dqq67f+IM7Lr5yLsU/Ykzi3MKPeqv6Ta5fOayu3/hT NzwqbZbyAK1aA8eu69fVr8TtZojmeLs/qDDXgHp8g2OBx1f1m1M9vgnBn4Pr8U2o6ze+FR8zMnNd v2aX2tF53dRy+rp+8eR0VvVr5yA6bl2/8eEpbB+bva6f4F0dUxnWZda6fuOr+oWIoVnr+qVQqS7R /RhRaRPG3CVHdMuW09f1G1/Vbw5nn+r6Dbmtnr2u3/hWUj2+2eMe+qv6TV+P7zjFudvRHKN1/Y4f 95AyM3fn6J4+7mF8Vb9+/WW6un6zR6UNqes3XpyPEUMz1vVr9qutLR5DGu+s6ze9NH6cun49rTz9 OrP2Kuv6jW9lQD2+4xzDViu0xyZYwIYGk/RX9TtWRp2Oun5rY6v6jd6MjA226K3rN3VU2rzKF4uq fn2R9dPW9RsvM03M2jSwrt+genwD4nCH1NHrs2ZNW4/veBbMkXp8M+e06qjqp5sa3/Hr+nXcKg3I nT5tXb/xdq1ggZ+1rl9XzFMHF5uxrl9rkC21vSPP1bHq+o1X2xfmVNdv/G2mmLGZ6vo1VnKkqt84 vbKHcHXW9Tuu9+B0df3GC4asJc1e12+cYPjuB3x651HX79LYqn6kWcyhrt/4GxuSxudQ12/shRmi a+dS1+/S2Kp+zbuk49f167N09mVuOV5dv/4uwS2/t9rv9EVfP4zcMxLW8lNqdpk5w4QkptnfT85t tU27Dmsf5qaPIjXb53jfClts7KdvLRuWW5z720kfbK7Lm7UvchIoTCCGQL098WXbz2dozL+2/2H7 6OjSw3+vbP28cPuqqp490mcunbhOjyCaCrE8j++/PVpa/mvt9BJMQUtnXt/8Z2nz4qera+cvfa/X Lpx/+GLt8b+fv2Y7O5+2sp1PG+ey3TsPrme7X//dy248qDeyvVt397O9w78/Zvf++/BP9ugPU2eP b/37NHvy45+/s6fZT5zKp68v/sqebTxdyf5cf7KavXp34l72+vXzv7P9h+Zn9sY8P5O9+WPlwdHR 0c7W0Y+/vp4/+qW+PD36tV+t/DhTnoZA8PAnIjvPbPz7/ua9m3frv688ffXnx6Wzp5ef3z9Vnf/P SX3L9x/duH36n8/LJ07UW3dXTv53sHwrr0/fe/fp+fULZ0Mo4NKv9W/53Te0JBz2dnX38ePl7NSH 9w67/7WTgvh12XPU0vXixw8ElO4tbVx7kYsSkL6O4LlrPZN1LnfT8et79ubC69Wjo7sba70jxVfy 1edrF8yZK9nutTvXst2/D25nN+7dPfxx8nXxDrGrS/57l77vrF2s7r7Mtnb3lxCT+CDbeVruU5m/ bOveh/XWaUrHJ8S9yo22cpjsrWJoifvEmcBqnF5avXA3X9rYOvMUEbfXl05dr7aW1levXAF2e2nt wYm7C8sIvL2Lny4vbVw175fW/3h+c+ns95NurG+/V35P7/7CfbteA908pc5uq/Pb/77dUhjV/pXz e0tHtDi7O/qPyv3r0Te1/vHjJfevp9+9nT/b+nxik942p+rDn1m2srlFf4Iorvh/ffpw1r1zc5XL df595vsa/lzzf55b2cCfG/7Pvdw34KjAz52Dz99rfMXeyq4eft37cfXOs2evHBX4WfuOXipX0w9y BJcurokf3p7avhh+2N5IP+hrfz65TD/gK5dubaWfnOz18Wp4556KP7x2C7b8X7Z14+LZhMkv39he Fz+IL9+4tUm8cv2sY2V/rbl2Tq7qVz8+/XI/PVT0p7n8ZMn9ef9KanufRESH7a7jkbNOxv5wjagJ CGHlaOle5cjRPbew9+9twbK8Trzy+ykHPKFmz/LibN1/abb+ePTZuLcfu+k/eeEkfl1zH9g8zLZe 7KWJeRO+8sYtfPHnxvWttxdOn/v45cyT3Qs7+Sexk0M45o3nD6Ti2nVhpvfqQDfHNNtqdGF5QLOB wlKzq7erB3V1Y/fKmQ+Pr99678tUuvE9V2EnP9Zr19eXf+2u3Lx1S6/+t39yYZm2mnvobR4n4a3c aO/ubWCy1t0El1/cn0+26Ai4fz3P1Lu9W6vuXy8VS79b717rS/Ut7Vbt3VtD/4pWBc8DtyXTc/tJ EoB4PqcgABfwr9v4z2V39okOrH//dq+bALTr526dxtBWvD7hSLQfxr0PZ+ksOmb76CyNnkgG8pdz XVGbURPm8rOdt7v7qy/v4Nhv4jivcKHNDz8+w8X55ll/utWJLX194+WaO9EX18Nq4Ow7ccFh25sQ T56zLu3+sxrlZLu71W0ccZQhbD5si7A33JnNVyDEb2bvV1bOhXN8joaxonZen7sQsCvrtMdOQqZ4 +N0Bu5uCQLz68e7ztf9OfNlV69+2s+u3L3zNRumBU7156RxRUE4eAI28u0ar1rzhJSkFEmxa2ksX vyV3T3gVXUxy+bURO3fQ8tHhM6IVKqt8auc11Udmtv3jQSMNAe2dHxsOq37x46cPqjuC3RK29HPl R2zg/kgD+dkbm/nNq4egY8tfrh8dXfx6VrIyEn4ubLBsTdKOXqlfmCTwMfNfvnbqemjg4PRIA9e2 /vBSHzWhdp/fUGmKPLm6+GKF9urWv5ee7BCf2vp3/dwl4lMBe/o9YC+Otv6992XNnLpw4Q3tVHP5 6d07KV4MFJ1GzZWbA6O/cP7wYeDxq8/xw8mOysWBk2JAv95cAX0NNYxfHpl3jpau7Trp4tcbtUkd pZ9WVy6//C9NDF8JxvrPMdnBy2YuidUws8XJU+XD1butgscp+okC4HhAr+WAWmktPlffOvu9fGHp a+oca8PcwPUfj1IV5naZ64248NTEG5EKwot+XDb7L8cI8hs8IyMOjb7XlLsj9tt9Ni7Ei/6F4Azt 4xaitQwLy62FAM1aDU04RaRRj/ptaGJzo3clIeGcDQ3QwG8f8k5uNjFmM4BQrk3fB2m1hmC1Ptsw tjc3uqZyYbl3MkeaIO2uYzVkaW+399frn2dbz4UZa25Etb69vDaoRSpE7Z5zZ+P91lp3YhHo+0TW +1ocslZq49Qt5T914+a19CnM0ndZx0rduPZ9NXTqk0pPLud3r79p+jsV8s9PH0o5qXv5Rfnn6yuX G19ZP/NPKWci+1LJP/fWzss/X5cX5Z8fL17yCotVjn++ULfWZMHulUPW91fU2ucSyVFevA56wh9f ksi6tvP0+U2SI50Y8N+mFx2IqTtK7AWnnyuY1P2fXtiwm2fCv9QKy8krXtiyJbFtpIu89Y1EB/rT UaWXRyQ1hBd3t6JMkSUJDzMS1Zk7q+kHrH798238aU2+s7d2EH/YkD+8Lj/EH7bkD9+2P8YfVOMr buGhAt09Kx6/8WTlXXj87rr84WP+Pv6wSazFyRRXMlbSbm7sYpPeVSRRqZuXH+LPB/CGSk28+7iG uX2wzg8dnCrPeXrv5Cw2YBxsXMQOfLBFgpo6uHwL0/bAN3vw4Ak1a4SWcHP/yHtEnNKrGzkox+MN KUdfvnIeXzlvLj/++fDaf5sfz169f/D33vU7t5YeJckl+r5sN+1/3XkUr+nVm7sX5tOsbPTB3kX2 haNmr9mf9099uPHqz+rj1Ue/Tv278+f7+xnGp9JO1q9+vb7iZcYXr01UJXIxBdcvl3HTPGON1uli 1x9sgwI92wpH4Jlr+90rsPJnKgjdz0jc/4p/Gf4XS5S7+3aArL4wQVqfj6xOFGaMtD4fWX1heby0 Ph9ZHTM2Tlr/f5cWyrK2i1Vel4tbD3/99+Ho3tG/H//9sri+cH5h6+otpZ58ef919+jDh8cf/vfn 9a8Hvw4/fPm5eG5x6+qj7Vu3Knv9w8HX9x8W1xs1LIUdtmE3NNcqUxV/Fod/Xth4s/u1fGay96NW xbdfbvz39NO7a2/+eHD16voX9er8ZfW0un7y/a+dheXr2zf/ekUUs8MurNNev/53fePzzZMPL769 /nf24pLwBSAN4My3x99habsJC9Ly0vr++5dL63r30dLKzR9uLABesGDGmkvT+grpO5lqW0oLSfOX iuXtX9f/3P3wnPq9/erGw+fF3e33J8hgemXrx/vzC8u79cnP93eeXTGvz/+59+WSG/Xzv67eLJbe kVCf1OZZeBGtyyBuNAsv4jMzhBvNwovoK4O40Sy8CF8Zxo1m4UWOXw7kRrPwoiAtTcc2puVFC8tD udEsvMidl4HcaBZeFP2uGvbsZM0OBCCezykIwLlX976u7Dy79sftheVrq/8d3XfEoA== uHltJ9t8PEoAIoXxBOCMN19frc6QETUM4/5Xfxaff2YLN13gkskaMTAn7p+ORusf3vznjj3put7m avNVWkunBlzBn+fWAr+4uR5X4y/3xlOs0M1NurtGHNUmcTdIfq83EcV0c6vnxtNRhrD5Tou94c7s CkKiv0N8fxPPMbNmKEHxuN4h/kLoE9JS7mxKKvDx4lbgg3tZZt/dudxBDwq3+T7eY6Jw6cVXopGr nOWv4RE10XY5wWYFMtpls0oWq1a+zrnarJLFqnnPN1+bVbJYiSjuudusksWKb61+j80qKb5eG/8t NqtksYq2y99gs0oWq3ZO2HnarFKv3R77bTartAyei/0Wm1VqgDLQ/SabVaPK1G+zWQ23w85is0rb UFri5m2zShYrGstvslmtRYuVt/X/FpvVWrRYNWdsnjYrqSWQ5fo32aySlkA31r/JZpW0BJb5f4/N KmkJDbvSnG1WDRvZb7NZJS2BZuw32ayS/LOw/PtsVklLcNL4b7NZJS0hRKf8DptVslhRHtXfZLNa ixYrOpW/yWaVLFb+Lvm32KySxYp2cpfN6vzCMkxT+ztf3kuz1MLyskMeffj56xsesPvXPnz898ve 2//7cLSgFvl/mfsf/lvWi0pXi9pa94cFuvduYYWeXVSri3uOvO1vXT36ef3fg5//fv3y9uj/Fs8B ev7H3pNb1xfPLfKz++7Z84srrjfZvnva/bQKW9i+6+H+QrZ41f3/+f+4/zxcyPzn7yxkvhvup/9z f9x2//i0aBf/ZzFf/GPx5ats8T3eerigdLGpK60XlVGbRmdm8XBB5e6fVa0Xtao2i8zYRWX1plZ5 vmiU2swLnS+qKtvM60Itmtpu1ibTiwcL2v1YFIVdzKt6M9M2X9Qm3yyMqRZNWW3qXJWLOrebtlYO cR+p0YB7zxabdV6YRZPlm7mp7KIuqs2yqAr3j9K1lDmkrDfrLKsXta43Te0+crBgssI9bt2QTb1Z qtI1autNVVpMuftwpQv3Yb2ZVa4nZb5ZF0WF1yqzWRmzqGuzmeuqdEMw7iPautFVGMBi7vpWVeik Nptu9Wr3llXaNV27p10HKlvXi4V7ujZubY2uNlWWL7pXN8vcTQUeyYyby4OFRwu/Fs7+cnN9byHz ++Kz2yf/s6CNa69W9aIbwaYbZuEmXhvXEVspwnLjuo8JVLWbbyDWFkCsm9JCJ8RNoCk388z1TTzl JjDjxrFu2s2QNTneclOcqRxv5dmmrku0bVy/aXGyzbJUbgFd50qjJODWvTalf81j7n2DVXZInrkJ yN243QIX9LmidFPr5nfTur+ok65LxiHlplXGbS7XaVW5j+RuC9Z1yUNzTZQJwVv5ZlWbQj6Vuw1Q 1dRSptxsYdrqquC2lduF9F7ElJsSXS7uiSnvwsIy/Lfwt1ug67IFN4bKjfOQemPKsiYsrzTvcN8/ h+Qq51GUSieEF6iwpZZPuc1jcVbcnLn5KAWCk1hnhZ8zj7mNmNPChpawMwy2MTZEKRE5a+mp3C22 zQnJbFaJWaN/1GZxu2PMmI2zT3gLuznJzWahal4N1yTNCbBCYR3dNqrcrscZ1+4LuXa7qKjd4c1x inWdEGyjytEbbeRT7vBqmhIN0lAQUlY4kDiHRU5TYrNNpbD/3SLWlTvrbhHdc7nbk4QVdYkuuNYd 5SHE5AX2tjucJSYgIAfU9VLrUj7lTn5RlPRFU1VaIoVb+4q2csLch1WGnoZJcItXgp7ie7aoqoQc UD8rXRbiKTeaojQ84bVyxEQgbtKqTPkxe6ygY02A1RUBuao9ohQ/oh1BxGqOrFbc2256ak0n1p1G 43bfIWN5xnsblBJAntuKDrrb7DWNKXdwQjCmHOPM5VPYBzkf/hJsBP3IsyJ9bbujB62d5ih5bQ0v fZ1b8KUGlpW1O/lAHOugLeM2rztXRbbpKGGZzjimzw2kqJq0wGGOQpf0ZuUWjiHiURIq3Xxbbj/T 2FiOVxVK+43lfgd3d3SstgnBF82mKir5kCMzpuC2y7yWgKfweCti7iMZbQZ3aivqUummixib4zWm 8kiWV358HnP/wCbYa2KgBBhK7Q4Or5PbM9Txqqg9ojNaTffBWhPj8BiGUlt0wSHKkjgDppgx6SIq z12vTMnvucmw1AWcCcNnInf9ouFUZV3z/i/Acdx0um7qhBzQMmuVNZ6KC++/KJASiMaWGtkycbtj MkrPWIqcdjs+XAeoqsQ4cc6NY4sC8RyHF9ZjbhIycGg3ptIQXdEs/WBei5wYm0e8iFN4CuifKjer rOLe5rXStLRu62r+ninqsLS2ZsxCRhFjcR/GcZNArdxh2B4dcOtwFU46KgsmFo6/KEyIw0iGitge YU7UYlrkpC3IY4601zkz37LISkIsjr9G7zPaj056c0eaF9VJHXTeSkefauxHgTl5qcpVRY25jcPP KZCqJo8uIE62zq/7bJHllpcLHdiTw7Lorm5i4l23WQvVgxlsDGYr8d0uLExTmlrtZOKaSH449m5a IfhWIPmRFJSuMTdsZjFZE3H0tWCJIWGOZ2RgFa4lUwcWQ8eiUmDuVePwVI69Z5mVT0FAr8VxFQjv DrwWIcd7HSt0D7nehUnijmN4VV0mZLtjyPHMuc45GZilgKKiuajA6bEvPESdLbTlHa+KXCIFBJAw IobcVJb0kDt7RF6NFzzpYyWockAOaObrvJRPOSRTNbeU6yZS4HjV/j2P+WMI3cMNzYh+u8+pLAHb o8NtnbgKi2eKtOUOBRYoq9teFWRaSW0bWDo66d0uzDGrrDZNzIAGY10dU9ZeNCxqmjwngRa1Ya2j ZimrdrK95Y1vHZPRtdtqLHZCBADZqSF+kWbiEbzlxu5GKJ9yjJAUAYe4mWWty+raHyrsXryHk6BZ hHV6Bx1mKGWQi4FVFswQrTM/cWQJmwMIS4wB4Z4XWVbIp9xUkiDmvgz6mgA3T6Uy/i3lhbUwnfhc 5s/bKJaWB1OVVbYbExRmZAukLWIyt0VLVkJysLDDBIkWaghmuerGwqt7o63JD7k5sERyK1KCDyXk KE3lFpsQo/g0Oakaf+dFLeg5dG/r5q5qzA4wp49paqnOiF4C0yxiNzDHarh91wmnQTtNvip1kaiW O0rM7wRtMxmayI14yinlWV5zS25urUCCnuneS1icN6MyFom7Mc/uGpgX0NELr4BnoEe1QyCc5SYh bJsoc78r/FNO3GK1yCkNrk+E5HVWJnrE85pnFWuKqobpxCGGlQ0nMRRtxJZW+/c8lsaTVrYL4w0g 9oZyy1foBo1KWNrcbmdAz6t6sLQd0rtdWKRRAvM0Ckhe6zLRKMccHC2uckmjjAJdrBORAlBrz6+J /MCgU1plJZEyqmZpVDxVB07hiZTRMI1UDSIFjKiFIFJ40wmfgkhR60YLIoU+kEQsiBR6alj0jk9B nCgTkUpAJFIJEvNZO6U0Uz2YWB/3qlN/uzF5BNp7QOwPrTxjDOKQ2x9QlUwusD2BiXbju11YeFd8 y426KsnIE9W/BkbqH5Aa2m9U/4wxwdIQ1T9D9hRJePcICwYJVvWAqKJsII6TmKxOyh/setZIYY5M fyoXMhE2SuEkYWPkUxYiTFT+0t9R90uQV/2MO9s6E5ofOpgVuVT8EhT1PglhzIZIbFEntc+QVp4L FQ9fd6QF9o+IYRBVKeQQAGRaFVofOs0CXdL6DAludFK91keNZ1boeGQfLUyTuBtSfuVTab39FwUS tb7RnRIkUFrRLEm52K2wMNmo88VBBpUvAVHjS5BX+DCcosiKpMphRtkEkhQ+shJXlRZPgZkaUyeF j9ZKayFp+iWtcpsUvjQM1vfk317da4+0KXu6kbnFIZLkZkg72nIosUQ3YMYldtSJJbqR3u3A0Muy iUCa0Fg92Fe0P2KO0jgEgnU4hkAwATUYp3jIdSEzBc83CQlADG0oKCuOm+E1YFXJZkEnq2vfef+m 24rwPkbjuVBW0KWylOrLAXXcnV4lnyrRTZYVCpx2t1iOSNSsAGQVbxSHGZ3z8GCrBKAUbYE4AxFx s5RV/i2G5GS6pS+9/DWKpcVJ73ZhBlygaC6Y3wCC0OZuM+Y0tmjRJazyO5Usuo6aJ+2GjLVORXQU w5YJwRo4MpRb+RBUsNovFCy6TrN35K3OF4VFF1htmGR7gy4gXde8LmTQpbYrT3lBqdABW1cqIQfU cZvbWj7l3mfjnLfnCiTacwXm7blpCoKlFt9z6rew3XLPC5vl4inrr8WSuJiQaM8VGNtzCSgtW2rJ nkuI8TYBb88dXatI6tzslDlp1tGeS1hhWLqEPReAxqVatNRiTG7HCgRjyoOZIT5l3JqVzFNgz6V+ FEbYbrc7etAiQoVbEdAmKTxEDHwQnHZPYrjxcBNASGWNYPIFjnMp5HlMqaO3qqkvAfOmOddWZbXH ihqyehNzmiZvU1U6yc7AWMq28EADrFt+pRuEwhp3rKrGQxAU+MCbopQANk9NjB5QpnivlXmGh3JP 8iPncx/L67Jo8EdYB/M8l085Llp6eRAysvvbZhXL5doWxk+LzWuB7UksyWwjyxO3VnwaRjqntmHh JFYqbAkgpNXDDJhBhHaIO4GMaGtz3xu3uVlBNLU7CxiVEzdYLnXUuKaxOyVUJQTvOVZHV2rpKTf3 1u9Jx8qtRBxhyFioSljuOkMHzcnphWfLpf9a5plLWYd51iZPT8TNgdsUq+XIILzbIswzjx93X0Yt ijmCFp6VTaQ0dOE2OrutY1NaXMixupYVNR0bmFKzPEF7AvIXyICcLKCLbigdEVy0V7XqxoRJocT2 L+oezLD+JDrSAUF4tsyk0qi6MD8swaTKmi/WI6NzswDjZ+HvBIhm7xFGPwflFkCVG27U4H7CVDji xm/divWqCoTFCmyPMFtYvg1zv/GbVc0XvVXpjiv8COhONvYATTmFVXvpN7DkCiJ9G4M0aRMH8I/V WdMiEZuTGO6WvP24cmfN97YMNwelex4ASfu0R+EjASSrFe9Qss7zwDObCYznsNSZlm8qr6wGqdjA 6ltXNnXhgNaIllJ2tSyB6Wb3IauqIgqr/BhRETlBI0sutkOFi0nDJ4AswocS8/0ghHQ8RzScil0T YgpppMAU4AYxa367zoICh/tanhYYCE1etbHKFrywmdPaFk2NCdWlINI1XQw3SXkNBTFvPIXLuYwJ o5uKBsK6Cl6LkDvSTpwi35sya4iqsKSWWmioeM91ymgtn4K65pllneGgwGDJApdmz4EDGp5TPE3C 9gSmSrYJ7omp78LCEkV+klq1oKd0liVmQJ4JKT09VRk4hUOcQF/RLqxK4zvI4lckzTUmNBeaNqzI uYl/4yXcaXmtnh9xq1Hm/vDgEkIgXhn3a8YYfKLoKYumPeuC6IGPkXoZALwGTyKvR/uHYFPVvFFz q3g1HP/1lI+v0AjTGZsxHQXzK8Rz5I1+DcSAZW53zG6Tn+QZ2T2sFPcJKzObxH137g== IEzlSZLPMzhyKaEAHLj3cGekCvlUke5CSd538o0jGdZKeR9YqW0hBX5gWeUldxL4qfVS+magD6YK 6htL/Og73TRGgb+GK4h3GWGBPyFJ4E+YJ91pEoIoj8/5q4so8KObuSkbT1XsPxcFfoFEgV9gTO4J KPxtMwn8hLDBJwr8o6sVThFm2ssbUeAnjGUJFvgBuN1bJlEeY8rYDSwK/FhsVZaNp2Awy20U+Kkf Vor7o99v7TNHCtxq20RhDglz0rVfY7pDVU7Y1JmgX7mC+aAWtjPXQaXYGTA9leFOtC6SoC0QN585 mdIF5l2s0JJjgeIKNYe9k/qUyDN6RZqHeKoMXnjeDY7GV/mNoDXJgMA0exjVLHXsUVt8xW1gPc78 mAuvXxFFEH2IdCNXmj0QxVNu0nK/KESABBIvLwWWYxfhKRAlbyMNX2MN3Eu81KM8K9ITrs9asYqU kbkT5moyIoZTvN2xwmkHkKZGlz7J4iSwyGiJlOumUUNg0fgh3u3AgsVJIN7eAoRsQdGYRD95S503 OOF9siaLh3LmQtHiBKQw3trhLU70XeVtR97iJN70FieSkNg2FzavQ/wCpC2Orhe53OJotBImJ/xD MbOLJqdcgwF61Zhfh5G31nIKIhJMTgkSswlf1kybHkysTny3C4smp9EdIHaHMf5CJNn2GxivBl4k UhvUfvJcFKKwG4nR/ionyZfAnFTul5MM+YBUZYoGhHPiWyfbPkmJVlrycYyVUVVzoRwlUFkunyrS 9inJcSUC0bovMC9RkFykc3ZgIvs+XfRUig1F3sAvsGjhb2DBBaCyuU0mfiJAQRLxJn5SW8gjMmAk WtS5uBOi0dVeiPY2fuJYJBQkGz+Z32kUwcZPrWstrmaJ4FWZalBWt6bKmsZTcd2Dx3BCoo1/dMdE Poil1dpPLCmGNJpcF1FyTuMMZn6BRDu/wLyhnwgtMcZgwidGUtkEHNDX6iwcwcK775aW1TMy89OC sQ3CG/mp16wD5eGWO46DrfwNwJv5Rwbb4rlwFs78OQxUN2HpvObun1lZ9WDp/Kd3O7BIdRMSSA5Z 9YMuQQQVnuYsYSayCzfywrtW+qecFmW9AZ3JLgIRgo9wILsOy3nCE9lNbwayS/cW4uiiU2VthbHu gLtupVEPiO9oILuwnTPrS2TXQN72wjCRXbiyGys5T0Ii2Y2QnE44z1V1D5aWJ73bhSWyO7IFBNnN c3dWi/S42x3w1CV5PWBAdKW8U3gGqTshORvXDxYEBo8PHEy0hEAJIGUGMRafs2UC8Jp72lZaPmS9 N21qKCLicxGLnYotxY4jdMR7yhOyPTpiTEZOdwS1cIo4FJg8EVBFc9ONCX4z0p6Ycqs5nkU4BObw abel3Jo5XPq9SZocAgUSHQIF5h0C0VJVhNsHoqZWc7yOpLkW4QhZKZ+iaBEtaG5CgkOggLxDYA7T qVFSWMfw5JHa7hhxpNTuF5t5p1hyB0SDzNg9hK5aNlR4TVwgwR1QQN6ykFOsT+G5HcWh4FtBy2Fv wBz3KZ4t8TOIGai8xZqcbwSS5OmEeeqNhhxtKkSvNbytbAS2R8baotN0BeFdfNgHS0DeB4uQoJUh sgF/K9vwwXI7w8sQYovCkK9L9hv1/laEFZVuY1EcIB+svIDDXSUsVTl8XYuGe2leFHClquRD8FOy wgUrIckFS2Dp5BTQx+u6B4suWAILKnZhvfYdnKvQVVavkgtWDpfeIN/4pxQHgUUXLCAFu9xHFyxg Tqj27vRwwSJEaeGC1UC8C5bA0njSwnZhbRcsd1BhYxbXlW5vlAoWdxYoODqsdDsu08n9NC9BOOq0 J11nyjxctIZn4IhX+qY1HC0SkrMCitcihhtf+hjUHBIqrR8evlZ7ActRcUPvgRmXXjQp0ECZsZcU yXE0xQnhcR8sJCiKrojXI/+0uMHK3DueiG1Ygl0UVj4FCdv7nLOKjtsOmgF4R8AfH+/BicVvgKCi l9hMVgsVvbTe4ziKyuiDCYEvXqB209B+yq1LleeCREskK9gWlLCKgypTS8HYh+9552tv2uO+8wiD DckBdZXxWlU55PeEJFkzYbjRwEEvEYLZsKeUxt8MC+Go1MHfJz6FGxcpG7nVc1RDOEhtd+xgv7uf UPzj8/cLxeLK6uLzZ11xkVFZxiWpgfnjkFTqAktmiKgXvBHjU0XpNRltYcsNCOR5HzSQnoIpxYkt hLCRFDvDajyDo8tWHAMbUUEX8JVlR0WKxsNlf5VbLRFYYsog0XsMC1Z7B0flPSWM9UEvuoYnKOQZ BL2w+uCawXu46fEXmk5tqghxqhXrL04dFAhrZRY+4eIptz3c3mbEaG8CJleyPOdATbwXMAMbIavv YdI7oLAOkYunNt0/ED9zSBhF8hqK7fXxS753iEe1TCazqq4SwitE9rL0FHRwMm3nuKn04UQeqRxL zWs/Z4zZzN/nxJbcOrJDA3YExP2IyDlLT1noVooQ3tpheAAgSW13DLmtduWIslN0A22cWkdqFyKT 4QMUsD2BpXmOr3ZA4U0pwbsWStx1k75Tswgfsczr7nCMoY3nVB63HUtCCuxy/5UDkozrOm98OIfd jfpSwyBhPFYiJraFaZNx84rEaycBK1OyN5XTs2rS20oFj9yAYNXA9chFMzxF39b8RS+LBASKX1YU XknzmOGrMeh2dGdPXkk5if7kAk9/MxuTEJln9yRW+FtP0hlKS4fWWrDEXLPlmxDDbD333iYRI+Wy LPiw6wJcD9olb2VHm2vjx0sRqNi5WUbX9HhRkbMCdjMC5KM2C4TChHIdeskAqz+lKeQzcc35awLI YbCnbTuyWeIZxkO4e6YZdYoVbSPtpNqcHZ+8dhEHafieSiAqynUJy7wzgPtRIzCMHPnIJdy1jWid CLAC6SiakQ+BY+XUDpuWiCAa+lgOJd2vapVzB1ikSENRnnMmBDzJUc3tjgG3BXKIDOS9BUcaZUki DxiIvFMBSHDL+X6uG/N7YU++24XhRjA3TSwjtQsAMXI6bxR6i7hKa2xCoMoYPtfiKcPzQQg5USBO kfdVBm8K49+rcXNKhx6XF3sL4k34sOb0Ipnt0jEFD8C1mTzM4Je4dxNPgV1q5iJkwCKFC55sMAdl LH7B00/nfisUdARrNqLHKUiAYosiv+axNJ/wB4TM2o2l9UnvdmDoY5XXjbUIe0Cq8SVdImP7ELM+ ZKji7co6hq3YWZyIWUUqAkRaaxLCKkKZWyWfglTjJ0ApnIQC9seaTxRfVwKyxtNmug3fI+2mhiKL Ca8U7GdovCr80tEVdwGeUOmEsGKv8sKKp5xGreHvgy+S55RAYMPkk54waMcwdMc5qLzIR9HY/sxU nKODRmPFM1DUEMRAVFhDk0wI7OU5rXjCDHtbsIJXsPMhZ7Io/F0mLYum6++RlYo0z82WgbxPchaC ow4ZYwod1ElSimmMJUdhYEgVnbWA8AzW5L+dnmJffTTkhEDDUwNZO35uu6MLLSoEtaosG8w9QoG3 l4iQqQRrLxFNp5LwxqpYRRJs4u2lYpuF5OMlkrXYNqR0VQvWXsKD2spz7hR5p5iYBjUoCp/TJT3l JLrCCwnM2iMiWHvCAmsvykCpmbVDrSy0laxdQoG1Jyyw9hJ+AZKzF/AoFkycbRJ+QQJjd58P8gDz dTeyoqRHIl93EN3cS75eeO+FxNfRdqbLxLMLBFkqK/m607AKKJXxmbjcnq3HvxNXb2+SuMGxnJmx DabuvsksNPD0OL7A0iOQOHqEAkOH6cYSEQm8GvHYBVxgBEcv4X9fSLZPkdxasnQsk/Z7IPB0YMEt m60EcSCBpScksfSR4bYOExznjHcAp1xGhxLLOGSckDA08tEEwv5X6TzB3w5Xb+I8OSjDbYmhFDpF Tphm21ILI5MJtQ/K6FR5dk9IR6WsKeeQPE+IQCb/rvRQwdepdPDJvBeRXPNdH6v6Hku8Dm2ZUvVg hq/KGhiUI9xflRXfeScxo8r4lloKIxhQpXL5lOYuYiLKGozJIZSzhhYZuVsOaGpKW3s+TyY1+Fdq 2q7am90kYuH7zO95LI0nLWwX5jeA4Ofw5aoECXN7A7mgMi2wvIa27hkze+gkxEABpc2RsAJmAzdY xDdnnhbQqa7hTpJOOV5y5FV5pRaQzXCaTTr5AvDb+2BBYBnbA/K64qgB0emC1daIbI+ONpIMPAxf ESLSmSJDdF1StFOEqK9kfsGZRY4GgRjowzqMiDHLdhD0zeC2gIgr7i/pc5W1CcF7PrZfPGU44JKM AuTLmxDIqsyCE+YpCVpy21fJnhfkjReB7Y4RN6mGRXAsnWt/1A8FlORMm1HYeTcUd6B4swtDJJqx DcxJo4551ItAKJkKZNEqc3Ng4X4HDwYyZmUkFNrMX0bBUqALvIboVcWu8BZn2cKrDgaZiOC1km/q xFMVs0br7boAXMNsvdDkiAAoJ6uY4rCfPYKU9r2si7qkz5VlySa3rHR6DBBNGdECwv1m40B6ynpm ibsV5YhJQjBPFXlgCkzMZ+nb6sTE8li+SO7EIl0fWf+0PSwCnOmgJ9Ok27AsQgXLpFU2PUQ2Rwuf MITFCMukVY59qqIQT+nMe54Gy6SFtw98soRl0pKjFS04myatDppZME0KJJomBeZNk0A8+/KmSTRN wTDCNEmdMmSu9KZJi2hq/ptMjhic5xnRMGmVkwXlI7gisP4lWCUxR7b2YrC3SiYsLUWc7w6obZUU bUarJLAaZvZolQxd88ZG6j0yGAiTJJZGF0YYLjELliV5b5IUSDRJJiyYJFNLwdhIW6HKtTRJ+i6l Ryx7XAV7ZBpYskeODrZFxGD7r7SgoIcScwwG/kuE4IYBu6LUShNCLuDxLGFclt2X5fmC0bTMmFkV Vc1YwS7mLSyvvNmKsiFa3JWRXBP4HmzdtO8jb7Qw22eCNcIJi9RVAIiwB2JUkKTpblxASABo6OvQ lD23USBmlm4Paz4HFEBhycFHCQRNlUwExVNxHAiNcoTFkjcuWCpspvC8OqDRKg5UzDnawIaAadro yLMoEFhiKhPeIyzt87g0TaixpoIyGahKRS3FGYvriKIQepvFHWihyyTOCCSKMwLz4gxaykHc44Ig T6LStVwz9xGOxw/PQELhuwgvzyQgyTMJ8/KMRRpLU1vZa9zEVbmUZ0bHG8mA8a6tQqCxxjvgRgy9 ZdIaJBqBRIlGYF6iQe8o9VWUVeh7cMkUEo2lBARFLp/SnJEurp1AokQjMC/RoCWnwtay55ZdkIRI MzrmFjVwBKkm63W6nUhYkPX3JOaVI0IoSj4YG6xVfJCTcmThHxGsUH6v5jiM3jZGQY+M6TK0HjAY Cr2hWBM/w5RpeUXgzhab14R2ZMl2rBtPqXBDA3ueaiCGXb/xHnvUUuQy6AilbKzEpi285TNtbPjc CCUeXWZ9EZZGOONgYBmnsy3Zx4jnxLE6ge0JLF0IjS5N3MipBU9MDpsYOWwQojTbrw== lIbght7YzIvhCNk64GkOAcxus+Y0zaU3hZBjAUaeI5AjIngt92FU6SnjVVcsCgQxgSD+xm+IiCm+ pbPkCKZYySb5Bd8zVV0kxE915m0K/qmwP6BHIgpCDE9ziKCfbOV1RIOYFTFRuPDO6yZC1vTtjilu nRtY65ilRAOCwMIZAWKE/YCAsGH9ESky9i8QR8RBRaWY9HlbAWFMcBqYgqE+2g+sDapj3Py25Lgo eUSsk0PLxkGiWGVv7iPtPCHJgCCwxO7Rlmoa1QUWDQgC80TFUsh0Ju4u0Nfa1I3bDBoRApPTU0jh mfGtCNkPANAsJ/MBIL5MDeYDQvgW2psPGog3HwgsjSYtaxc2Yj6wcOAwflWIg7mtUSrO70jXH7Ub tC3d6VZaXKRYmADLrGE6tTCdFplkeXC6yvw+YGKWEMNnEu9FLIilSD6diYtDfI67lOhZqbw5NzyD brOQ7PUFGlzpryjdAGmJ4JND9j5IBeQ+hheLQOMU7uRovKATRDCQAUl0wCPodxkMqvEpSuLNgjmd d4Ek9pgw8m/D8ErOVJoIRlGHG5FEVtArIm3xKfScDNgwqlvFQ2azd7hx2e5YY7n+yDtlC3ldmDCx h2DZU8b0YEkRTe92YfG6UGB8VwbAFFaLo4MckWXDQAeoCoYR/5A7cUWm020hkFz7iwZ/WwjMwrwt bgvFm3xbiMaLhr0JfaobhrQD7riVNk6L0PEyXRZaBH/nOpeXhcD43j1cFgLRudJiAiIQLwsFJmbT cNKHbkysTny3A0uXhaM7QOwO2HzpRiY873YHhaErceEIhM3laAHHQAJFQfn0BaZZNaOGSDXAvbCi hrS/+ggI3jNB94xPmZAgP7YUEfE9gXGnYkOx3yClJgHbHQPGZKCnFJokTGkRErPrvpCzMtmBJYbZ bk3ONwiQEicPX6qZLYGCkNvdHmH+S5rDeoBwuv5wJQWEwksi7XWTgmDwYOsnbI8wCsdMb9aZF11j 6xQc7m8ovOufrbWXvNJg65xTzzQwn2FfTgAqCjQ8hZzQ4hOkyKlrT4aYqLrkBPdyY9aFD42PCwwT KQuqfg9IIGyUhIXtVBecIyZtuRoOvFXR2Ji1vzITT+ESWteypYiI7wmMOxUbiv2GdQW2KLEzR0ZM O9N1taGyHApILgJ5Z1bdWFqFdmtpwgukzSQJIPGJhKVWC4TpKlX2YJFiiXe7sMgnBMZkEgBlAoos oMjyICBGRlEgU2chhTMg1lZFYhQF5bAstGQUwOrMOxl4RiHeZEYBIMuE2Ioe6GDf83yCOm6tkk/p JMiCUQAgqUQwCne22CYdGQWQAsnP0wxEIDIKgYnpzJI6N4qJ5YnvdmCJUYxuAbk9Kq/bJsJVqJBI Av5YyLG+R5hhdzfNrkZAvG7mfwKSdCWyMhPE99SZzzACKOr9/j3tHWCDRgXEHwVNsd9oCcanrKEB FIiRrptuNY4vOfm2YHpKMeHAtFf8YU+hIinKV7egfGlOZnNI5jtBJThy+mZWcxQn5T1zxBOz5b2Q 4CWisKViYkSH8J0IMM86YMe2fBzic07AtFVFbXk7A6IZSmwraJYVd8rq0AOeZFOwk6joZ8mxGECY fGKbIxcEZitjs0LYsQou7l7CJw+pBlKX5AohMCR1qgt6ihkDdjoSNouvIXoh4176zjU2YntjTeGC jUI9JTKfUjUOsJJDysVSZFxUg66qq4xDmACw322FYj5WJSSU2VFKPpVzpDjapiElBOUrcs6cmDDl F84hChkXUWWAkz0hYw9s6cjHT6YEvJexUEZFE4hKQzr1BZiQ5UFLxN+FHCwIrOarFrSUZ0gUXSgy J1PKHeywAHAvrVLyGctXAKhAQUy+okD/ggDKhYK3bMj+j6WvKGEm+DiVrkDdgxwszLVN+Q2BMEmB w0Fe5gk54EQ6OZX+iE9lLMajdevEBYmU4Y5DYAUXN0JLuqQeINAOF/UYMA4ZV2ywvus2pwIExldr qnCXgK1CxR+0BEhzp7cCRHsRpoWKjKZcTISzBEKoLTFRAeFOWiQcTE+V5HRSUzEZlnGg7GhsAtiO cPu83bF9ZdqgmumnLjyl5swzFBEVsT2BQd2tqRJCercLC++KbyFXT0lFbXz/8S3LSYXTmHCNjRsF TdnzagFYFVRYgVlPE2vkiKYKHiVnkXIckS+2I8KpUUiEiBgyfdQ201yyhAKJE6LZP5/zgTAGCwAV O8qgF2slOy5WZrtjtCnbD7LWMQ2gDH+HlHuFeHrEqKeIbKF6PxQ5HBFKoEc3JQIL3mKuXxSsRJVM yJMLn6t0Ag5o1jkNfHrIshkbDZFzmkBUrBIWMSpCBLMNHDmKSgyGPgfVJyLboyNuJ+CxfHcUR3Eo MbjlV5T7RisqSkJOkpwNh6xkVEik5EhIZNupiEwUgZgAq6qKq9LoguPnwCNQVquBIZpUc3tEKpB/ hjwd03Zx/Ca3ZWNPIS1JnRXyIe9bTXuKsvMnRPMM4L2A5cQoF9FQLjcRPqaKStIA6pGuxLajXte0 dcqQE6hkR1HarD7iCRgcZSK2JzHNZrk9Me1dWFielHEntABRzrIXcMIy74MLpMy5sBMNNCu5pg8A uuPnDpJnsM692IGhWrjz0a6hTDNIXgMfkIhwchdy3UhPYT2Q6judnIjg5OSUOExguY/edC1VyKOI VeP4OeTW50JSNkbZwQ+kotpB8amSHSSIL5DfM8YH3y5tvV8uj4+M1FQpCEqZmKgQZJoQTbxiu2OG 2zmFKl9VEJohYmMPGYNpMooUufIWNhI7lE8FzgwvIJxwpSTSkZ7yRQ+o7JXx9T+YCYI6+9QpOds6 sAGpVJ0PlsLdLDGmmEeHqhfS9Sd1QFVZGf4+oG6TyTE8obzrDj4FVpoAm9zgE5azaSGNHseRU2o5 3lXmRUK40+SIKZ7yxRvQkrEUJRoRzbIxx4pFjARfQrAw1Csur2bZl4XWBPtgu2OdUvSYDz1FiyT5 HjLGZCZnP0tK/2AVbztOjaIRo5yphPAU1qWRT2FSITGTAEhpDdATRKjH72139KEdzuX3uuDcSCBA V4OJEiHYuSyKyLkTkDi3wDznpgQolZH009hQ2CtRWbpDMOIhqHC8goFxJyQx7ohFxm38NaXot03l 6Tz3Hh1xyq5i2ftesG+knSBJMrFv4z0zEhGKiGDfCQvs23gjTuTM9L3CNvg3F6fMtHzKX1hF/i2Q yL8TFvg35w+qK9lzf5Mp+PfomFv7A1delbVJEjwUGJIT1DZkVCHfvW4scez0bhfmL18bmJ9IyjxB Cg+uCakOVO49R4BQ8iSOHsN2hJBqqTAeghSQrklTtANFvfnSiBHhdBN0wSaeKtnvB4iTBtGSL+FI bZclh/hUnNuSOoVE7nvUVsXVwzK2GlDrsPSQbkSh7ORwQiqWR7jr5Isjnso5mBk6D6QsASSn0oSJ GS25BkQ3JlYIdirVCSXJf3QPCOdi3OPSmbPe9eCQY2eYcntsT2DkRkZpbJDPoTadSPq2NSyVdUCF j73eo17QxV4nZms2wchedGIsju7JQXVAfkxyDgwHOxAl5gStArMcrkMIJGWU4qOsUIXhu0cp5Bbw eYEcJBbOYV47tazFM6YDiRQYhb2QpgsrFII3mFdH0kq16qgSZ6K/uEhU1LPwFGUlqLglzkWREE1F WTiegyGxNGXGRvpODKKPbSKBHyN0I/fFBMmyh7iM2gRhTGchGwcbYtJTNnBKVtwpxiZRSp5QXEXp EPkHwJQsmpFRUAIkq/FLBIlRxPXswsK6y9QWlu9RhPaNgIUqEBCvfSdMzlh4twsb1b4RqEB+XEQr UZLgkDCKx48YIi9sYf15oJh9iVBJXKxqwLDhIbNRS0wsSefG32UeTEE5uQNynIduPKX4IIp2AiK+ JjHuU2wp9hvfw2JHZLtjxJTrqIQSkTdYVYDEccLlWl71YHLGW63JiArDgYYkPBdZCKnwWOEzF9Y+ yFhTXDm0AOTrJc6DEKWKUxvU3l+G1DIYFVFO3LCEDfsfWF9VbTJv9wBmDlpuVcqHLOfdpoYgFCMo hPkvsU4+QzC/sTEz5+Sge4TB4g8op9wZaJx4JtyYKalIVXEGkohwz4nVxodqRHfnXBGZq6UlxNuQ OYbEY6xn7BFEoYkSyvjqBW9yilTcXxqvDZMftuiUR3h85JcjnvKZFclGRgpLRILJlcOePAa/ewSy VEXLyITvMRsXxLP2PkvpKdQOVN5OQZ6BQKhgDhlmfXxpDb+MTGA8DeSgK3dm7XOPtbFgL2FCHzcf pb/SpURyNntud2zbFBuj/JYDEfTRmBLj6Mu4TNawZxLFA1XStsQz4o1suc+QhI3ih0/yJyayZAbg ESxAGex38Snv1kVsgqrtJsS79PsFZ8zf0WHhSrKWY5iKSE/Fha8jgvdqLpaQnsKWK0rtK3MrXkpv Hsk4vwYvnGGOknHK0jRPkEJxEhOC5ACW9LCRGW7J2RQuhH0k+AVd++q6wS8iFoz8HsvzEYwKoUd1 sYZjZMnyB6cEq2sOCKUizxUboRxGJYuxnYl/2Czj/BpxgyMySzHxjccAAUFWihAcwuPlfBIhBKJ5 nvBawBLdRVPkwdOJQYaAc2QD81IEEF1qX5IYPaTOF5lAeIiUVztiHFhW2iRF1BTrw7u64tSkta+T kQSJtBLIyoxspxIJokTEBGeJa92FjfJ3m9VBJ6w56utQYpEuWKW5XEg3FkV88W4XlrGFSGK5v7lz TCTcC/hLLqt8fQNxFQbMBitlfIomknR1mAUtXcV6km+cnE7vaTZkEO1WZLkVbxao6lRQW6ZhJ0Wv Ci0U+gPuOpHN+FBGuQQKbhxyK8V9FWzIIpmY474UVZmGXgc7A8Kr6lAenucgIpY86qjnCRMzGmvV d2FphdK7XZiXb/Y6doEM18Jdi1oUpkJAxl8ykKUQwTdUOS7aABHg5O3L0VKIQJ669vYAfkrjdquo k6UQ4VO5X142FAJh4pIMhRzTVeXJUIiWKIWBNwPi+zmu1qKhkDoNO2t8wgftBUNhApKhUGDeUBjH HiyA+JLmuYt2QhpFXYmHtA70MBCUhEQzYQMjMyEhdDEXzIRAKP+9MBOOLFH0fkcwFYlfyUoIrFCK FVCyEgJRqtSJoGNMfBeQrIRYY21qI5+yQWbxVkKaHKXsorASjvZhNMjK/x41XIF5DZeQ0ssqdLgJ YZtXVHEpBEhVTcqFECOW8aM6Sxgd6ybmNUAv+SCAiS4zEudB1uJCNy4HEehT57mwMVLgSuV7xvwp IUHFTZBgRUhrVuZ5NxZUXIGEvYTymqUVyitFaBW5QDgei4oRiacK9oEMzAkAW+6TzEVBW3mlE3ci JCtM0nMbiOdOCRODievahY1qugg5otSJcm8kLOwNGH7rUpg/COGdmfYGrK2OxjT2huGoFGoKbNZD VRDWA1axH34Uuy3SepRGWD8Qg1XlEkFEhW7ZqBHTQQ4VaWvAMzv3Emx8z7DQFDGEvQ== 8CNkcqZAEN6ZBSd6sZRzLOedT7eQaMadTx1kfkRgIi6nsX0RK+INx6LXKNOkZK/pws2bAYnjCwSS EhGvCIm1hfmNaWwHZjUbZhpYCPmDoVPlwmpDoS4sk6UtDbOm8pPnn8o5AQlpCJYBnXki5UvCAFPa 73IQegAZy3LGR4dIhNaQX2NMjkbzvVwnFiheA4sjVPwP0fcsdDWN0ATPiPhU2ow5m+WxZZlY+0xV vNmJXaVDCySY+v2xEUg4tBGTFCgcuC6s49ACKmrbkBhAqnhzBJEBqljQkVgYsKVXUYXIQM49upRP 1cHOEUQGCmCxVsoMhc+ILmUGWNGppSAywPCtTLxLxPdz7Z1VWGRAr0uTHkAOkrJIEkMEhMSQsCAx xLFHaQD/YCU7iQwYBVtsw1OFT9me6HxCkswgMZYZgNBVTJQZYPumaykhM4ysUhQarA+ukUIDMGZg QWjA7DVEBIzKX9gnocFG94v4VO5XKwoN+EctTst2RxfaIWUm/J74QsICXwBis0rwhcIny5N8AWbx umzcJFkyi9e6IR/ALB40G4FRPsEkM8As3nDrsDCLS/UVn0SiKOl1xHFB3nDIfCEhUWSIkDiIsHdb 3QlFgSECcR/V4cIhBgqhSqcRhJQDhShlpXgKJnG/C0hegEmc2UeSF2AV52vYQHpg8matOMgLEgmk J2JiKHFNu7AO0lOWnrAnZTZCaXVREI8lwi4saVTx1Q4oabIBikpcWbKdLKmoZcV5iqUiW3q3RfFU zT72SZGFwZyYmVBkKeypVg1FNr0ZFFk47ynpGgiEOb3QZEsfmC+eKkJPgyZbFhwpKlVZpD22eSlU 2dKfCTELARGqbMLEjBp/cdyJiQWK73ZhSZVtb4EpPHZ1CSNPXi+qyp+0wwVdVBwjH7E9iRlOIOEw uFC6/duDpXfLnKesEyt8Ztc90ZcuLLybtj6+VSt3Jh3vYbvUocRKT6dKnzxQYYPgsAEw+LtmFeJg QZNXq9vbEdsjzGZuk1JL8C7zWFG2MI4qwasUp6ZRJBSZ2YBQNJt280PiZUTwSa9mN56iuF4gdJ0B pIKjGiEcTikweG1SMDy9mWeKsQIGEURBOfGREdQF1VQztEzAAfW8dr2VD4WxlF6BxG0RzMFuSl2f yB2PMFyWAqPKGoQg8w4Q1t0lkvHNesLk8obFaWLNZRVLXoEpa34+h0nHLTmuVzLfLmEaedhQoVIh +z2ZRBKC0FfF/YlY4AQwmiMni1gTWInK5srVGhnMjXiqRri70dQSVXYXSM6mHLwXMfiigsbVbgFQ 7Uf0vOaQyIhsd4w5iC30NO5UFPKmg/+72YBlvCwTRN1FvTyFqFRILwnIuZSiHxNjBVW6QDOVY1y0 N4iX41tV+hvzV/J9bXqkcNzPmLRwAvHpkw8WBKa9nbgq2fSc+oyP0Q7zwHbHWFu1juHjWtOp05Rs 6lBCivmsIddYa6gRzjwMBFJM3IAH7j3K7dDYlMDoIpfa0pQlhjCdj2BUBgBfsGDzJlPk9BBXz5Dj cS5WHfOP3BA41XEn1L5yFhoypNckxLD/Jd6LWCJcri3HVXQPhmgIivQQmPYuG0jEVhued9JB0FeS 8iOC6dEcTSie0mxVxkRUlL0j80o/2i4QTMnTSsUIgZHASAgkP4yI6E0DIZHHv8dYHI9Y2i6Md4Bw qFcF35Chg5SO8lBghfddNuQi6f5GIVpEjsC0h2KCCnH2PiQB4UyIS1EFrjsQdKw0Xx0rkuYQ14gy imWWJwTvYcOBIMenYEGHREotUSIhRCkhXAnf01zJFV7MmeFO0QUnxllz4QRgVHuTGq8tv8jJzeHs SzQ6IOiC4dJQ4qkcF9PcOmcgjwh2Hed1EJhPN77HWFaNYFQ9OB0u90Wqw4tdXVLIa+qXRw5oPHSH np6Ci3NlmH5zLruEcGJvvBahiqk2GirqTJBvrE2WZVaSb3TKdaHxFIiT8iycYnhQ5hJFKgS3JMwS ifTYHmEaMc9yG1IBTM+0BVYWnh2TM4HYkZ5lC6TgXAjbHfs2hkZgARzVJgZbWmKEAiv4BlMsE6x4 iCdWOTsCRBrNC0xpLcC+CkqM6Oao0DXPraVp1IiT4j95NzvdV4XfMyTtwTojtJ1SRCTE++7zOnsM Hs60P5CaI/PDww04fYnZjEd4wZwSWsmnYAs0haA3CBGoaME0X7jwsKqKxBt/6S8myPgEFBKhdBPb HVPb4jTKb1OFSCtD+XUMCvTkGFvA9gSGJUZ4s8dg22phVVnnhFHGXdyAGKbpnNWJSmhnvEEppt+N DgUCdcFPkShqUIqUWVTY2CgflxdCxsR7SFRUyO2PSjJuUPw9OGIKxPI84b2ACaaoWVjogpB/QZOA nKCQyIFKsFQ8CYYyxsBZPivqhOCDuNdWWj4Ff2DDApstqeugtEHioMSDNMPMgAuuCZCWofCJSBIC 7xZbhdfy2jTGEhe6CwsLLbiM8VW2hHBK8Z9GMnsEnHrJygunAonCqcC8cIq4UaqnmxbO1In5h+WF /1JeiodChqIomwokyqYC87IpxfRmpZRbMDxTaCmbjg45EihDJci0lE0pO1lWC+GU4oSzOsqm6e8o miaIt5HP2WOi2EnTgCjBJJpirmyda/FMQcGnkeolIAqmCfJyKVqpM1OJ7mJQJKYlwXR0oC1yAbOC 2EOHESk5c6rbVMjFaL0iNgIlLhLeG0GqjH3kBOILhvksYor054pT6sKsbCvS2imDOOY4qGFVHtLU 1V7wQKhqSE5JnocRce/BI6cCuU5PwSyMDVHl7AeE3AyUo5DaLpnlw1MsB1+qqFgnBUSGjA3AuCKQ VVyYDD3llNYIDYVDQUTQdx/4mp4iWzVUhQrSRmUkAiMWpeZImJjPkEuzG0uLQ070XYigFK11F3QC 4cOwjqPHecbSqEUFOUiDsAuUlPMV5jnDo6ei9oa8QQubEDeKwrBXpHiK8uLzfCgqBgSrZkm2GyRs 4vhq2HMMrVPG8TJAiNth7Boe+gIpOFqG3/NYKIsSW4JYT9WoyLGYWJOKQjxMpKZg9Y3zDKO2AxJ0 qZjZqsjY4h4R7BRk3s/kUxaMqPKWI0qtHuczCJDbHXMcCRNShmlaPcXm/EPCSMAnDBck6Atd/TeQ Os/yhGBUyIRReIWJildAtrbEzI1PfJ+Qgu/W8V7BfmG0HynNPUzyxNsQnE5JK6g+owDwmpOXsqwS D6HjNR0RzV7taXgwmFVUPGJ0yC0ShUReCswGZANeg4eEUaWmiBmU26PBomXKoSkRKqKJgPiI+VAp asnyfuQ8Rvic1QLBa8jybox8yniZIDUUEfE5gflOxZZixxWn8YrIdseQMSVAszxvUuuICZqArc5r 2oEJGjDSnqACkK20PySgIvgU0rl6TYsuYwyZdithCTGUat8WCTmgFAvGWPmQ4/7W6w3MvBOio2KX MDeJKOUKhAqwkoCMScTnyL2EDAc52ePRTaeUM1ZRlh5IeyDxEKgoYUcEEuWIUMU1G0pQpVKYSfGt OlNCNPV9VFpKPTAj1rU3eVAFjEqxKEaUq2Lhv0IYPikNJcet7HFaAOVtoBpXBWid/EOoU1RgAwbJ wgvohKAP8CIJti9+quQGknQmEZ1RjlqBIVmJ5fd8SyG/NGTuqmRRO+esvmKEbn5h7McIS+o4Uv+a XABeVuGMDgxlPpVfhYqFUjbD5+uajBDR8oRlaFpPsVBuTlhk5WTvVDCT1EGOs94e3b0yU4JPwSGp CXi/Ux/EoUS6sMa5FUA43BEKFADN5CSVBCqBj+V51aAlcN33LNE/VLBkIBqKiPiawHyXQkOx01AN c9OgJCPDJUpS5ewvLylJxATVqOAToHswQUlG2pMTXnmJWCikNfyjKt1QSCMm2w3vdmEdOk5NfjrN T1l2v2l8KmCi2fBqBzT6IcpFUFQsVrA9V0DenhsTFkSTE6UrQL5YYc9FWD75mIsvx1B9YbulNAkQ oRpYHiww3p6bwzpcekWYDgxyS1R1aeWxoqwXZNqIxwpu0TDrRIOuQKJBV2BxP1CmCjaKdGHRoCsw b9AFQj740VSL/Bze1hMNuhhRqXQtn8o5A1c0sADxMx0NusColFU06GIGM6gd0aDbQLxMJzAxnri2 XVjboIuEA1QwTXBPSgJRlTZxTyQqoPQJkTEimUGWm1pyz1wZdkEVT3ljUGSfAonsU2CefQKhpJOR feJ7ikYauSe6SQ6jkXvmmd8ikX0KJPJPgTEDRUNUsS2yRnytRsCCYKDUSy2NokinUWVByaG6xDB0 8wxEBoqnHBNQkoECo+CFyEBzqqrgDTfEGildRCFZqk890XpKsZNMZKANxDNQgXkGKlryDBQ9IJFW MFAxQs9AMcKS7yM8BxVIZKEC8zw0V1xYMp11sijrunHWVeanPVEEpz3XXhYkFgqEgoUSCx3dw2J/ Iz+B0kryUGAa5a4jlitfMiVyrAbi+ZrAQu1utES6n2eQ9DmiOomLUioMmwuJHIkUyGaZGkpI+pzE fKdiS7Hj7ntGNyTy0SFTEKLywTiCjyZM0AqFUnFN60jCBN0faU9MuiZbnRCPuIC0tkZSe63Z2BLt dwKJ9juBhQ2OKgy2FOZZKmtMAoc4rrrmUIX0FEpKZwUb18mAJ5BowBOYN+ChJfIJEz0v2EVYGPBG x5zSbXj/I2HAQ3npUldC06Cy57pOt8sCiCY8gbEND30jD9Ngn6OpMOFCgcxxmC+Ko07PGLZeRCOe QKIVT2D+XCPLCBU2S53G0MpC6FDbHcMdLdTs70Y9ST6UmE9aQkhpmEhXFizReO9B4W5COTPYGSNt Vsoc4U2WdGw8VtgWVrBHW7xKopwasEeILVOzk5PcWCjPmUu7PxULrhVvSLL7C8TyiT1YSJg4RHD8 LstOKORdlpC3+wPgu/aSYgQph4ctijwCB5QghDIJpGcKzt4ajf5AKH+suMICRi5bwepPAHy/yOpP KaoSEq3+CRMjiYvahYXFl3W1LafelxsjYWFjUB2hshQbg4oEFUVjY5CjbtMmCUzzmfP5ejwW9FaB USLTeIuJbBp0q5uW3PqqsnJjWMUR0+IpzYV10sawVIdVhfTcB5Q1QtcqQb4acKb80iGhG5U35p1Z cVVRIOQpSZKG5/LWciwgDZrSXiGUsLF/c8RUhlMUu1B6ppWeqj0LQccNUuYkxHIwDd4LmFhgi3Qt VdmNlV48amAlS0roRa7EfoXXb6lLuafhl6/8bSo/kwe5tAwjNnwlj01UViyX2mDaLX1NdprhQvMV MSUrEkj0z0qYHIvy4nsXhtNe+vFFLI5PBanad55uBopCDhDpGZluhGfiXizZWzanUqoVD6bIWIAO eVzioQWg/BW4PzYRSYc2YpL8hAPXhXUc2sLNd8lMCmHqnGHEsxvFAjPluigyrxZBvkMWDc0HyiMH VAfWlrmWT9WcbJb0EK5KmgWPGe8tccAlTwvvRQMVYY8yhzB3LXz6Nq6XG0w4FeUgcQ== xFR7fyVCDrjrZeDh/JRm038ULQXiZfiDBYGV7DUuJgHu2khsVhTBAcgj3HVKaJWewtj5WAdanxDL miC/57EglgPJcl4HZungvoX3GDOW01O0FiuVZa65YnfcwFy1NlJq1q4wh3XNTBQmKy7L60kx+5Kg GnSlMyOeiaaagiVV6kSti/Sx7Y4OjBZl9tJAYg0JC6yBbgq0Eayh9IFykjVAxOFhJNZAGqSnNUE+ oLkN7QfMcsR/khkgiNUNCkvupLopjMIZWzcYCDJ7FLXwFRBIkhkiJk4jXFht84osYUJqSFjcSsE/ KFAXbFeW/yMFAgUJWic/gxZVLsQGGDGZhSSxAd6pQTAlClTmXFstiQ0JSRQoYnIsYV27sA4KhLQK fHEXHa8TJtYY6UvCARzFwgWkeLUD8maBBqZ4x1KiiEi/Sp9OImNfgGQiqmBzyFTzKa/n++sw9Mpz NX/LxGkh6PSTIqwMF9cNbxY+wgYIGVWSqlKVnt8LNRt9R4STeKrwPY1qNiy21vsras1kroqOWxmr S8jkwkbCNAsR8ZeYBwsCS1NqONlKJyTWJ77ZgQX1dq9jD0zhua9CqTeFqDAoSIcLClXmyMwesD2J 1ZzZzGGhvFw3lt5F7GZRqG7M+JJne6IvXVh4N21+QBSroZB1sCDzBmEWroGm4pAZRWlCcDqpeB50 F/gSkOt1QA4WFOIXyRksPZV7rzzjS8IpCt4BATSlzy2tKM4Ucg2StjMDxmOUWQaYpoWxwY8eqhh4 EAWYYZN74IA6TpEY8Rlf6Agfowvu8HeesY6OdwLk8+Sk0SPmE3xLRX+IgBxQBynPnXjKes9CKp2G BhKiuKoGDzZiGlERhJBdO/d15AjJwACwJoj62u5Yp8B7FYn28Oqi3P8Ue0EYwmXQFydiGJo+DnKg NHjgaFSRthAIJgNyP64941O+whQaomBX6gh5n4XPbXd0ocl94VdLJYaxmhQR6bqIyld0OYwVRgUI VQStxVjOsK8K+CBmZUIwgTUpQPEZRLGRWwKiR5FiISGYUKZYAssp4aCiPHm8yKy/Fbishi4bEPcW uXRALE5P5UymgGSaPB0sW/0xZSUlgsJD7HWR+2LWe4QZpKMExuonhktsHtHTOTzFUhc8grYgnBqB KXIh4BVh5TsCivNi8iQRhAykOdlDkXch45NA4V34GPs/BoTHWyAtqXgq53BOOsAFZhcCGm0Ef4C3 O5ZX0BcI6hCb4S8E0w9W3meAj9iewBBcXjN5g0yX0ZZrYKaxPyGgQ1IDQsFjdAGVlfxMye4axCtz v2xUf5fE8cqIlcVNDYqryPXH5UGWW/kUDivs7vgcG0MiojmxEN4LmCDCMHeTea8Lgycd2G4DC2Sk RAHRguehrHzYSqFzmxAeYk6OXPEpMPWcqJ5hEkcSecZHl0qCHvDE0603nPuCfOCXQvsLMIkotqom TAwnrHUHFJZa7AwI+HXJlJfsaIcS8zkGCCGfvtx6elkGTYwSCtC1BjnvUCBHwPYIowqJ1Jah4oaE FX6SBMZ6DhXbzLy5HBeMadmrEIciNkeFu7NMbiFUbSJiGzdHQmCBp7cCIiapQiBClndj2Bokwwoo 7AzETVWaiYr3EQxBLwHBJ5UnjOkpTxjjzkDaQRIYsTNyZqbw0bAQR+POIK8NzU+xaVAiYWdETG70 sK5dWFh/sTfqnEPkApV3WwO55jQkzEj5UQlMa6ZEtOEjAMLPF1ACAwHGKiEZnW6Q/jrnughydVFz inzb0lM1x3iokNRBIIq1C7wXMBRBJpsFanPR3ULsOEYHwh2A7dEBR+5eU6Q8i1SQ2jETUIiUTZii Gl1EyyuvckYEXVNkbROY9soqil6R2Qc5E5FanaZCeT5JCN5DIpFCPqS8Ghh2i0ASD4qYCU4MNW68 bSE7Di+SSgzl/xd2LTty5EbwC+Yf5qLjGsU362gP1oDhBmzYPvhmCPJANrwjGZJgYf/eFRFJMqu7 FnvYBSbEZpEsVjKZj8iXxxmfdYm40RGc/IkSN0srcCfKwtaWW7+9wh5FVISDmDfgtQ8jahc0Kr6G RRTJanaSYh8uYO1Dh9k+REeKuho7DI8r1CnWPoxwifcWfasil9/chw6Z+3BhYx/GEJl0u8aN2bVa /D58nPHMcERmE3NB105ElyxdM7FIvztsI2MnLmTtRIfZTkRPyrYcm4zPK7vfiBFZWSn7Rsg8oq9t 7ESHzJ24sLET0VPN2Y97k16x9uHjhO82Iiu+J92AyO3z5rGiyoIxGhdfSMnY8JEKUqiwRtEkHSOM SRXPgImrH5knhTpVUHb8oZeZj3IgWMjd4uJnqwDzQFLvYjEOxjMKhLnh+B0c2DigjlEZtQGwvuO4 T8kqIKF3xliB7h4ZdhgDayFNRGM/TsvgW2Uzu8JZA/u3Q+qxHEwPcZgUyZug1M4QzPFBJ4feHaoy bF3KFdks3agM0Qx50M9GoYoWFpuAN8qFYKtsXQszsawjDosQ4uYOh8g6FPtJU8QwOVPXiow/pgww NxlcU4x4wRWg1bEIhT7SgWkVmDiydBnsK3Kd3mGsjzz1lrX7WPQbCfALSaq393Kxb+cnTr84Fe4o C+TbGWNx8fWS6I8ETwk98yV77QELsseisYivOZIfVEvbkTqFhWwMKhmI7ehudye1CiQLkBorRqmF BJX00/sWBo8rK+IEVjGweYI6BSlK+zBGbFp+VbxaTRBgEXVmRZb/wdx4VCXzJdjORYlyYMwQXos0 yKk9kmDFerlY3nuBMhI9xks+lh/BBJWSclNZnuPFH99xROAKHs/QPiBZ8qxrRYFIyUHpCPskgDEZ dmDqq5fqf5jE0oXOc8fXnJLlfgyGKHRVLA3R7UeIya2fIfAuFz2RtcaAJWkTRxe0CHE6si0lk2EJ 1RMjBRbrgeGBm6XoYkHI6R4RIEWxE3R0HCqVpZGkoOoueFVdNQ/ROUsE3p5cuySnAfribQCIDksG f2BrJruOaQzK9k3ZSo/MgRa5ggAo/ZcccFVrZUUVKIrgoARy9KOLEml0T0jqrAt3wkgLxp72rp6o rrvnVW1cTLmh8MWd/LjfWk7JwVVagmpaLyMCBhhUvKyNDpuWStA3hUIZdIW531aRg11iThmbY7nC Hq2XeJYyiIfkefPYIFoLYs6GoGR9DTFRbdlfIVnjKJlFYCwb2cpMaQtbnFiPD1jXDb2oRKAI4Dav toEGqp4PDdAt8ULgG+W92TEi+qNqLmQgkenjDjO+uRuxQ5WvTvYX5dCPg0U1yGI5HT8FMbXp1GpO JclmyboQTFYHi1xt1RarZJ4BolQgQK09Y7HPf5OU2X4UzyaD9W7usNNL9S98twxk+LV3+ovBv0PF fWJAFH5LmrZUPQJvmdhDPMaoW/aUk8wVVpHueB74NSdy/A5cbhk68myFdKl9D64nj4znLWyMava0 Ro7ranLze7mYM9aDtSFTdfakN4e5PQwDIhlvrjC/6vf9eXofhLRt+0nVXdhQdeFSj7U7VZex4P2k 6cox3p2mW+nkyk6Hpae7hZOmC2qGFJJvhVM4OEUX3Fxb7SdFF2502nScogsbbtyqU3TReQm7U2FZ YMTU9qHoIuEuF6f8Yn5hw8cyFd2FLEV3YVOrhd+eCeILgrWODtCp6FZsE6fVukEtPbfCUJZPraIF W0xFdyJO0V3YUHRh2M3NSahYrSacl1mg6Bgnv7U6zhaSiUxFdyQWeklDFot00nMBNbOujp2JXQVz 1z0WQ3aK7tx7U9gtZCm6D7t2KroMmyj7SdH1mBTd+ZKmogvqvO4lkzb0NNpL98M+6bU6FRY8Jtkr tdrQdMO6VhmZE8EpugtZiu7EpqKL6Jhel17Lx1H3XoputcKEq40lcS5NF5Ojn95pulgC+veHprtW aWi6Hhma7sP63mm68NSS18HJk4UNeYLsY1qnpjyBYVYX+SVQQJRFN9YUKCSpO12KwVsgq8YSKMjn o6trtSLBYHYSBUEJTKh1EkXB7f0kURAElvvuJAp671v0sqIPc8KSKDBbt+TlDuI1yFg2JcpClkRZ 2BQf8GXzNniCttKqkygIHtE9YQiLNaolUhDQn+PuW1lmyxIpE3EiZWFDpCCWo3lZAZsvs7OdRAHj W/BmMCQR5hqdQEFCHZmbnECBVTvfSRRkVW/xfAdBFrd8kycsZ3MjSaLM3TclykKWRHnYt4v/KxgT mZMoHpNEmS9pShSFIMSTREFB6B6ikyhwW4TsZcUIH/ISBYGCeXgD1AqW4pydRFnIkigTmxIFAT+h hCUtGrMSqpcoqJ7UzVbDNthue69OoqDkUeUntiQKJtx45TaJslZpSBSPDInysL73EgUBjDCgrzAG Yrg3zTAGMJcp+m8EKESURrFz2KIYQMAWSkq+EUlQZQnUnRXZcsGs/IpiACRb+IpiAJY2u7Dpu0Hn +7Ae48aITEApByOKgWxuqJ862yCUZhguEMawgBXH4LBR8GfOf4Qo4GFp313QgsZdS2++Fbjtx65h yaqFzECGE0bHHBDRQI1ABiLZHDIWyPD4puY3hLJSJZgn1UgkgTUXxwAgMhN1eIAxKbONzTiGiDAm Zv3MVgxjQhzsCGTgQJoPWni5GMLdNgPJW7u7by7M7psASnTXzR2S++66uYN49e66idI29e66iSzE OHpfWKfhfl43dxS38NdNcN3RobQELSCWYTw1sqAQu24Cadv5uumwed0EJlfOkJfsPWxhyWMgMiU5 qY2i4f104VyTGRdOMPDFuwsnGPK6v3DuTFhYF07/97hwTsxdc8bLuYPaxX3zIvZre/7LsVex4ex/ z398Ss/fn44rrPzVqPRIufq2sBAztjyIL45r+6HL4gRY2F8ZTnbu9T/H39+fKjRYZseM1m9HD8Z3 GqKl96FPHi8B+V6YSEX4BwNQQtNm/3D8LoiF1Y9mtoNlqY8BWmddlZXdA6sqqT8O6wM+4bkEiE7o PAJDNIpmZA2wvsVPfqkYVCYMHyUicK/ajf7wWvBOwrP++/vPvxicd7+a+sGmH1VUMeEHClaviHdV kfJG6T2wm8PAfpO4VyrsiYVBRheY+y3rKdMmcYHBbouS3rc1lAto/HKJoJqGl2w8/c1hvovd3MBX mBv5Q3/uWVCNin29VicdWNzHVQ/qBxEFrzWR5zkEHBL8EIlRGBl0PDqPxFBWbz2+fyAsKsu4Hdii K4oJjggOuhzQVRwuol3VGtEX9r0ZxAeWRmgruu1lYNJHkI+ApDcgFi6BQvS5HUjTqeSHDyxaPOYY Pyp1MLAav4R5vJLpyuKOeO4Siebc2cSYD0zhBO7VpGzZBh6zL+f0uvYRzLcw6EgK7mjSsYS1PZm3 CPWCKnyvuslnkacCMScW7PE0cAOTzdKgG6EebRlp8cMLEMlTtpBfIMoRGukg6CoZoYkfajNmM49Z /SI/daZj3X0nD7vR7VSUbiAZE8+nDYdyReGMEVxH7OaxIHIiYN3iwq8w93zUF6HV9w== CnPzQSYUE4yuMNZpJFG4G8sVVkUgdfNzu8Jsbr8aq/xwuKSNREDIYQGVqSS1avyRWJulgQNcLMem 8VDaRNbD5IbG+KkUxGuGGPtYmpnoOpNKsKjmelYlTdpUGGADCLfFAd0IFdwlKfHbrns3ebHZNxMW E+MhmgYQWLkQejLH5Md5yGT4Q05YksgZs749rIOPi46W+DM6eHOY6wCOFebrPELu0Q+9+ScVpS2x ejDE5BuDklNLhRlMh5YiAUUTJXOaepB7ZS+sFWwI4j5xY0LFvtnq2IfHkqoS8c54pIkgwafsitye 2Fh55ieCuaFFUSowEhgGVyDkclPw9HGhTXw/M7yYfK14P62ZWm4IznYWB3IYqNptfmSiYFVcGhhh Xd/2shCNkyTgrlUUCTuQ3CHQkHSX1SQEBd2higVifJCvUhsrJwBjogswZcAXXFe7EnBId4niAZW7 VoBFmCsxyNqQwy9kdb1Ti3SIsZM5rJofc749Mk1ki4ZFshuMTsrZwFSOG5mSYWJgkFJGxXK9BN72 FgBtewsWmy4MxtoNN0BMlnkaNCHb85k0NIAPTDsgA5prRBaGzN2dNlPbaZMD0iKpcR83sNvchUyz /fQZTWx9M/BV9dguIfcZPfTmA41BZVa1XSiPEGkcRzIKIqsYLmy5bCy0rMSoomyyiXxg1CpDdFwr M3uvbYYvExEmmbxYW7UYXEkYsHeJsmPQlsDQxsv4QhAaa+HJE6tIATLqqNokZ/dmqTZwngEwXtYT VJh67EaQfiMujiDPO79akXxNJFhM6kSmtCGtD4uKI4zLsnh4/gMJhxyw5xc4yfHWMsOQWNycMqma pRGFazDLiVhYfcm7bxVFaMqkSsadj7dZrUrIy8UbnkGSNSupC98Oy/q8MShd6VEDUzQyY94nFuhj QaooqbYY3z4RlDNJCnaeWDMONJCAF36tcEozxbeqRutEPnAMBSq8awWa6iSRosvhGjuuEVEzvZ8P ZzpRvnel6qC/liTe4xbEfU6iYIdUmfUmoh1+qA6nVl0x68x9zeRtGggpr/dmK2FYFAnT6gmpkjQ3 H8/jPWciH/yMDLtdzOcuawTys/tz/c1hS1CgfklO5RJysuOhNx+KDrZKnAXuSR3fC2Sf62NicPpU JXawhHnffwFbQxqPuIAuRgSTI8lx3Igmtrro+/hyHyE37ofe/JMQCti0R/na3hiCy0ycid0ctvqN W7ZD7Apbv0WMLflmL7E19DmUC2j88hydS/vB0mIXBG4skCXiQVVEU6dBQovfThsEv+07FdJG0m9A wQqdk/UIBQFRUCB0yYvjjpaIwKRPfadQHyXUHHRjpKwKmreiUg9Ajm9KcibB7BVItlvn89FRNrIl P8xGi+gJsgQRynjwL3tsruXDev3SteH2u6d3v/1D+cePn/55e//z65cffnh69+7P7z++/u3L+3// 9Prl6ePX9/97fX7/6dPnb++/vf73+Jfnj19ev377/OX1+eu/Pn8HcvxkNH/37sc//f7p/8045Oc=

Dynamic Networks

General principles

  • Dynamic associations within individuals
  • Across time points and at the same time frames
  • \(n = 1\) (idiographic) and \(n > 1\)
  • Commonly some form of vector autoregressive (VAR) model
  • Often some sparsity

Time Series Data

Experience Sampling

Autoregressive

Autoregressive

Cross-Lagged

Estimation of idiographic networks

Model Equations

For our example:

\[\begin{aligned} \color{darkred}{Sad_{t}} = \color{blue}{\beta_{11}}*\color{darkred}{Sad_{t-1}} + \color{blue}{\beta_{12}}*\color{darkred}{Rumination_{t-1}} + \color{orange}{\epsilon_{t,1}} \\ \color{darkred}{Rumination_{t}} = \color{blue}{\beta_{21}}*\color{darkred}{Rumination_{t-1}} + \color{blue}{\beta_{22}}*\color{darkred}{Sad_{t-1}} + \color{orange}{\epsilon_{t,2}} \end{aligned}\]

More generally: \[ \color{darkred}{Y_{t}} = \color{blue}{\boldsymbol{B}} \color{darkred}{Y_{t-1}} + \color{orange}{\Sigma} \]

  • Red: Data at current (\(t\)) and previous (\(t-1\)) time point
  • Blue: Coefficients for autoregressive and cross-lagged effects
    • used for temporal effects
  • Orange: Residuals/Innovations (in \(\Sigma\) )
    • used for contemporaneous effects

Maths Break

Intermediate Summary

  • Networks are everywhere
  • Almost any multivariate model can be a network
  • A lot of cross-sectional studies with limited informativeness
  • Longitudinal data allows for new insights
  • Effects across time points and variables

Interpreting dynamic networks

Temporal Network

  • Effect of variables on themselves and on others over time
  • Directed effects
  • Mostly: lag 1
  • “Granger causality”

“Contemporaneous” Network

  • Partial correlation of residuals (innovations)
  • undirected effects not captured by temporal network
  • For example: effects faster than sampling frequency
  • Example: \[ Stress \rightarrow Expect\ Panic \rightarrow Fear \]

Putting Things Together

Estimation

  • large variety of estimation approaches:

    • Maximum Likelihood (psychonetrics)
    • State-Space Frameworks (dynr)
    • Continuous Time Models (ctsem)
    • Bayesian Estimation (tsnet)
  • often induce sparsity via regularization or heuristics

Example: Epskamp et al. (2018)

\(n >1\) Networks

mlVAR and GIMME

mlVAR

  • Borrow quantitative information
  • Individual network parameters come from a shared probability distribution
  • Parameters are “pulled together”
  • “Between-person” network

GIMME

  • Borrow qualitative information
  • Individual networks, but partially common structure
  • Group, subgroup, individual networks
  • Heuristic algorithm

Multilevel Example

GIMME Example

Interpretation: Time Intervals

Interpretation: Time Intervals

  • Alternative: Continuous time (Ryan and Hamaker 2022)

  • Correct time intervals for constructs to be measured

    • Stress vs. depression

Interpretation: Change over Time

  • Stationarity assumption: Means, variances, covariances are constant over time
  • Realistic?

Interpretation: Change over Time

  • Common solution: Some form of detrending, or modeling change over time (see later slides)
  • Detrending: Remove change over time

Interpretation: Other Stuff

  • Causality
  • Measurement (Bringmann et al. 2022)
  • Variable selection
  • Sparsity
  • Missing data
  • Distributional assumptions

Optional: Practical Exercise

If time permits:

  • Open file dynamic_network_exercise.R
  • Work alone or in groups of 2-3

Google colab link (.ipynb)

Optional: Practical Exercise Discussion

Evidence and Pitfalls

Topics to be covered

  • Estimation Requirements
  • Clinical Practice
  • Density/Centrality
  • Prediction

Understanding Heterogeneity

Problem: Estimation Instability

# Simulate 20 identical twins
for(i in 1:20){
  l_data[[i]] <- 
    graphicalVAR::graphicalVARsim(
      nTime = 70,
      beta = person_1$beta,
      kappa = person_1$kappa
      )
# Fit network models
  l_fits[[i]] <- graphicalVAR(l_data[[i]])
}

Feasibility of Idiographic Networks

The robustness of network results now firmly ranks as one of the field’s top priorities. (Marsman and Rhemtulla 2022)

  • often only have vague rules of thumb
  • Number of time points?
  • Number of variables?
    • always think about number of paths to estimate!
    • idiographic gVAR:
      • 3 variables: \(9 + 3 = 12\) parameters
      • 5 variables: \(25 + 10 = 35\) parameters

Solutions for Estimation Instability

  • Tests to compare idiographic networks

    • Hoekstra, Epskamp, et al. (2024): R package INIT based on SEM
    • Siepe, Kloft & Heck (2024): R package tsnet based on Bayesian estimation
  • With \(n > 20\) (or so): Go multilevel/GIMME

  • Sample size planning for \(n = 1\) (Revol, Lafit, and Ceulemans 2024)

Solutions for Estimation Instability

Evidence in Clinical Practice

  • Frumkin et al. (2021)
    • Few case studies
    • Patients more convinced than therapists
  • Levinson et al. (2023)
    • n = 79, eating disorders
    • Module selection based on networks
  • Hall et al. (2022)
    • Individual case study on TheraNET
    • Good example of detailed, network-based feedback
    • Apparently RCT planned
  • No clear evidence
  • Many different possibilities for use (Schumacher, Burger, et al. 2024)

Recent developments

  • Cooperation between therapist/patient and data
  • Changes over time
  • Prediction of therapy outcomes

PECAN

PREMISE

Time varying networks

Centrality/Density

  • When does it make sense to assume that a higher density is “bad”?

Centrality/Density: Consider Uncertainty

Prediction

Prediction

  • Johal and Rhemtulla (2024):
    • Using network-derived metrics to predict an outcome
    • Network features did not work very well
  • Schumacher, Klein, et al. (2024)
    • Using pairwise symptom associations and centrality to predict an outcome

Tip

Start simple instead of complicated (Bringmann 2024)

It is hard to beat the mean (Dejonckheere et al. 2019)

Which analyses?

Analytic uncertainty: Go multiverse

Which analyses? Consider Theory

What is the VAR-based network representing, and what hypotheses are we testing with it? […] can be more explicit about which connections in the network are to be expected and which are contrary to previous knowledge (Bringmann 2021)

Come up with strong tests:

  • compare network models with simpler models
  • compare network feedback with placebo/simpler feedback
  • compare network centrality with simpler features

Summary

Outlook

Main Takeaways

  1. Networks are conceptually attractive
  2. Longitudinal data give us new information … but also new problems
  3. High diversity in network approaches
  4. Evidence of utility is still scarce
  5. Embrace simplicity and uncertainty

Questions or Comments? 💡

Get in Touch

Feel

free

to

contact

me

:)

bjoern.siepe@uni-marburg.de

Resources

Materials

PNAWS 2020 - freely accessible. Partly served as inspiration for this workshop, especially the slides by Julian Burger.

Psych Networks Blog - no longer active, but interesting backlog

Workshops by Noémi Schuurman - multiple materials for multilevel models in R and MPlus

Applied Workshop by Me - slides including more code examples etc.

Figures

Jeremykemp at English Wikipedia (https://commons.wikimedia.org/wiki/File:Gartner_Hype_Cycle.svg), „Gartner Hype Cycle”, https://creativecommons.org/licenses/by-sa/3.0/legalcode

Foto von Sabina auf Unsplash

Foto von Jonas Leupe auf Unsplash

Rumination icons created by Freepik - Flaticon

Shiny App Screenshot from https://gitlab.kuleuven.be/ppw-okpiv/researchers/u0148925/shinyapp-paa_var_n1

Hehe GIF from giphy

Treadmill GIF from tenor

Regression Meme created with ImgFlip

References

Bastiaansen, Jojanneke A., Yoram K. Kunkels, Frank J. Blaauw, Steven M. Boker, Eva Ceulemans, Meng Chen, Sy-Miin Chow, et al. 2020. “Time to Get Personal? The Impact of Researchers Choices on the Selection of Treatment Targets Using the Experience Sampling Methodology.” Journal of Psychosomatic Research 137 (October): 110211. https://doi.org/10.1016/j.jpsychores.2020.110211.
Beltz, Adriene M., Aidan G. C. Wright, Briana N. Sprague, and Peter C. M. Molenaar. 2016. “Bridging the Nomothetic and Idiographic Approaches to the Analysis of Clinical Data.” Assessment 23 (4): 447–58. https://doi.org/10.1177/1073191116648209.
Berkhout, Sophie W., Noémi Katalin Schuurman, and Ellen Hamaker. 2024. “Let Sleeping Dogs Lie? How to Deal with the Night Gap Problem in ESM Data.” May 28, 2024. https://doi.org/10.31234/osf.io/2hec8.
Bringmann, Laura F. 2021. “Person-Specific Networks in Psychopathology: Past, Present, and Future.” Current Opinion in Psychology, Psychopathology, 41 (October): 59–64. https://doi.org/10.1016/j.copsyc.2021.03.004.
———. 2024. “The Future of Dynamic Networks in Research and Clinical Practice.” World Psychiatry 23 (2): 288–89. https://doi.org/10.1002/wps.21209.
Bringmann, Laura F., Casper Albers, Claudi Bockting, Denny Borsboom, Eva Ceulemans, Angélique Cramer, Sacha Epskamp, et al. 2022. “Psychopathological Networks: Theory, Methods and Practice.” Behaviour Research and Therapy 149 (February): 104011. https://doi.org/10.1016/j.brat.2021.104011.
Burger, Julian, Vida Andikkhash, Nelly Jäger, Therese Anderbro, Tessa F. Blanken, and Lars Klintwall. 2024. “A Novel Approach for Constructing Personalized Networks from Longitudinal Perceived Causal Relations.” Behaviour Research and Therapy 173 (February): 104456. https://doi.org/10.1016/j.brat.2023.104456.
Burger, Julian, Sacha Epskamp, Date C. van der Veen, Fabian Dablander, Robert A. Schoevers, Eiko I. Fried, and Harriëtte Riese. 2022. “A Clinical PREMISE for Personalized Models: Toward a Formal Integration of Case Formulations and Statistical Networks.” Journal of Psychopathology and Clinical Science 131 (8): 906–16. https://doi.org/10.1037/abn0000779.
Dejonckheere, Egon, Merijn Mestdagh, Marlies Houben, Isa Rutten, Laura Sels, Peter Kuppens, and Francis Tuerlinckx. 2019. “Complex Affect Dynamics Add Limited Information to the Prediction of Psychological Well-Being.” Nature Human Behaviour 3 (5): 478–91. https://doi.org/10.1038/s41562-019-0555-0.
Epskamp, Sacha, Claudia D. van Borkulo, Date C. van der Veen, Michelle N. Servaas, Adela-Maria Isvoranu, Harriëtte Riese, and Angélique O. J. Cramer. 2018. “Personalized Network Modeling in Psychopathology: The Importance of Contemporaneous and Temporal Connections.” Clinical Psychological Science 6 (3): 416–27. https://doi.org/10.1177/2167702617744325.
Frumkin, Madelyn R., Marilyn L. Piccirillo, Emorie D. Beck, Jason T. Grossman, and Thomas L. Rodebaugh. 2021. “Feasibility and Utility of Idiographic Models in the Clinic: A Pilot Study.” Psychotherapy Research 31 (4): 520–34. https://doi.org/10.1080/10503307.2020.1805133.
Hall, Mila, Annika A. Wagner, Paloma Scherner, Katharina L. Michael, Glenn Lawyer, Wolfgang Lutz, and Julian Rubel. 2022. “Using Personalized Assessment and Network Model Feedback in Psychotherapy: Proof of Principle for the TheraNet Project.” October 24, 2022. https://doi.org/10.31234/osf.io/8deyj.
Hamaker, E. L., T. Asparouhov, A. Brose, F. Schmiedek, and B. Muthén. 2018. “At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the Cogito Study.” Multivariate Behavioral Research 53 (6): 820–41. https://doi.org/10.1080/00273171.2018.1446819.
Haslbeck, Jonas M. B., Laura F. Bringmann, and Lourens J. Waldorp. 2021. “A Tutorial on Estimating Time-Varying Vector Autoregressive Models.” Multivariate Behavioral Research 56 (1): 120–49. https://doi.org/10.1080/00273171.2020.1743630.
Hoekstra, Ria H. A., Sacha Epskamp, and Denny Borsboom. 2022. “Heterogeneity in Individual Network Analysis: Reality or Illusion?” Multivariate Behavioral Research 58 (4): 762–86. https://doi.org/10.1080/00273171.2022.2128020.
Hoekstra, Ria H. A., Sacha Epskamp, Andrew A. Nierenberg, Denny Borsboom, and Richard J. McNally. 2024. “Testing Similarity in Longitudinal Networks: The Individual Network Invariance Test (INIT).” Psychological Methods Online First Publication (April). https://doi.org/10.1037/met0000638.
Hoekstra, Ria H. A., Jill de Ron, Sacha Epskamp, Donald Robinaugh, and Denny Borsboom. 2024. “Mapping the Dynamics of Idiographic Network Models to the Network Theory of Psychopathology Using Stability Landscapes.” October 11, 2024. https://doi.org/10.31234/osf.io/9sguw.
Johal, Simran K., and Mijke Rhemtulla. 2024. “Relating Network-Instantiated Constructs to Psychological Variables Through Network-Derived Metrics: An Exploratory Study.” Advances.in/Psychology 2 (September): e939409. https://doi.org/10.56296/aip00024.
Jordan, D. Gage, E. Samuel Winer, and Taban Salem. 2020. “The Current Status of Temporal Network Analysis for Clinical Science: Considerations as the Paradigm Shifts?” Journal of Clinical Psychology 76 (9): 1591–1612. https://doi.org/10.1002/jclp.22957.
Klintwall, Lars, Martin Bellander, and Matti Cervin. 2021. “Perceived Causal Problem Networks: Reliability, Central Problems, and Clinical Utility for Depression.” Assessment, September, 10731911211039281. https://doi.org/10.1177/10731911211039281.
Lafit, Ginette, Kristof Meers, and Eva Ceulemans. 2021. “A Systematic Study into the Factors That Affect the Predictive Accuracy of Multilevel VAR(1) Models.” Psychometrika 87 (2): 432–76. https://doi.org/10.1007/s11336-021-09803-z.
Levinson, Cheri A., Brenna M. Williams, Caroline Christian, Rowan A. Hunt, Ani C. Keshishian, Leigh C. Brosof, Irina A. Vanzhula, et al. 2023. “Personalizing Eating Disorder Treatment Using Idiographic Models: An Open Series Trial.” Journal of Consulting and Clinical Psychology 91 (1): 14–28. https://doi.org/10.1037/ccp0000785.
Lutz, Wolfgang, Brian Schwartz, Stefan G. Hofmann, Aaron J. Fisher, Kristin Husen, and Julian A. Rubel. 2018. “Using Network Analysis for the Prediction of Treatment Dropout in Patients with Mood and Anxiety Disorders: A Methodological Proof-of-Concept Study.” Scientific Reports 8 (1, 1): 7819. https://doi.org/10.1038/s41598-018-25953-0.
Mansueto, Alessandra C., Reinout W. Wiers, Julia C. M. van Weert, Barbara C. Schouten, and Sacha Epskamp. 2023. “Investigating the Feasibility of Idiographic Network Models.” Psychological Methods 28 (5): 1052–68. https://doi.org/10.1037/met0000466.supp.
Marsman, Maarten, and Mijke Rhemtulla. 2022. “Guest EditorsIntroduction to The Special Issue Network Psychometrics in Action: Methodological Innovations Inspired by Empirical Problems.” Psychometrika 87 (1): 1–11. https://doi.org/10.1007/s11336-022-09861-x.
Revol, Jordan, Ginette Lafit, and Eva Ceulemans. 2024. “A New Sample-Size Planning Approach for Person-Specific VAR(1) Studies: Predictive Accuracy Analysis.” Behavior Research Methods 56 (7): 7152–67. https://doi.org/10.3758/s13428-024-02413-4.
Ryan, Oisín, and Ellen L. Hamaker. 2022. “Time to Intervene: A Continuous-Time Approach to Network Analysis and Centrality.” Psychometrika 87 (1): 214–52. https://doi.org/10.1007/s11336-021-09767-0.
Ryan, Oisín, Jonas M. B. Haslbeck, and Lourens Waldorp. 2023. “Non-Stationarity in Time-Series Analysis: Modeling Stochastic and Deterministic Trends.” July 13, 2023. https://doi.org/10.31234/osf.io/z7ja2.
Scholten, Saskia, Julian Rubel, Julia Glombiewski, and Christopher Milde. 2023. “What Time-Varying Network Models Based on Functional Analysis Tell Us about the Course of a Patient’s Problem.” OSF Preprints, May. https://doi.org/10.31219/osf.io/gz3c2.
Schumacher, Lea, Julian Burger, Jette Echterhoff, and Levente Kriston. 2024. “Methodological and Statistical Practices of Using Symptom Networks to Evaluate Mental Health Interventions: A Review and Reflections.” Multivariate Behavioral Research 59 (4): 663–76. https://doi.org/10.1080/00273171.2024.2335401.
Schumacher, Lea, Jan Philipp Klein, Martin Hautzinger, Martin Härter, Elisabeth Schramm, and Levente Kriston. 2024. “Predicting the Outcome of Psychotherapy for Chronic Depression by Person-Specific Symptom Networks.” World Psychiatry 23 (3): 411–20. https://doi.org/10.1002/wps.21241.
Siepe, Björn Sebastian, Christian Sander, Martin Schultze, Andreas Kliem, Sascha Ludwig, Ulrich Hegerl, and Hanna Reich. 2024. “Time-Varying Network Models for the Temporal Dynamics of Depressive Symptomatology in Patients With Depressive Disorders: Secondary Analysis of Longitudinal Observational Data.” JMIR Mental Health 11 (April): e50136. https://doi.org/10.2196/50136.
Siepe, Björn S., and Daniel W. Heck. 2023. “Multiverse Analysis for Dynamic Network Models: Investigating the Influence of Plausible Alternative Modeling Choices.” November 16, 2023. https://doi.org/10.31219/osf.io/etm3u.
Siepe, Björn S., Matthias Kloft, and Daniel W. Heck. 2024. “Bayesian Estimation and Comparison of Idiographic Network Models.” February 23, 2024. https://doi.org/10.31234/osf.io/uwfjc.