

Associations between ecological momentary assessment and passive sensor data in a large student sample

Björn Siepe¹ Rayyan Tutunji² Carlotta L. Rieble² Ricarda K. K. Proppert² Eiko I. Fried²

May 28, 2025 – Society for Ambulatory Assessment

¹Department of Psychology, University of Marburg ²Department of Clinical Psychology, Leiden University

• Many **promises** of wearable sensor data: Scalable forms of assessment, high temporal resolution, more "objective"(?) measurements

• Many **promises** of wearable sensor data: Scalable forms of assessment, high temporal resolution, more "objective"(?) measurements

• Many **promises** of wearable sensor data: Scalable forms of assessment, high temporal resolution, more "objective"(?) measurements

Measurement challenges:

• Many **promises** of wearable sensor data: Scalable forms of assessment, high temporal resolution, more "objective"(?) measurements

Measurement challenges:

Many small sample studies

 Many promises of wearable sensor data: Scalable forms of assessment, high temporal resolution, more "objective"(?) measurements

Measurement challenges:

Many small Unclear sample studies relationship between self-report and

 Many promises of wearable sensor data: Scalable forms of assessment, high temporal resolution, more "objective"(?) measurements

Measurement challenges:

	?	24
Many small	Unclear	Strong focus on
sample studies	relationship	prediction
	between	
	self-report and	
	sensors	

 Many promises of wearable sensor data: Scalable forms of assessment, high temporal resolution, more "objective"(?) measurements

Measurement challenges:

	?	24	
Many small	Unclear	Strong focus on	Proprietary
sample studies	relationship	prediction	algorithms
	between self-report and		
	sensors		

Investigate overlap between wearable sensor metrics and self-report measures

- Investigate overlap between wearable sensor metrics and self-report measures
- Focus on three transdiagnostic markers:
 - Stress (transdiagnostic marker)

- Investigate overlap between wearable sensor metrics and self-report measures
- Focus on three transdiagnostic markers:
 - Stress (transdiagnostic marker)
 - **Sleep** (common in DSM-5, robust contributor to psychopathology)

- Investigate overlap between wearable sensor metrics and self-report measures
- Focus on three transdiagnostic markers:
 - Stress (transdiagnostic marker)
 - Sleep (common in DSM-5, robust contributor to psychopathology)
 - **Tiredness** (indicator of sleep problems, related to depression and other disorders)

Recruitment

• Four cohorts

Recruitment

- Four cohorts
- 500 students each

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

• Baseline assessment

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

EMA Protocol

• 3-month EMA phase

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

- 3-month EMA phase
- 4× daily assessments

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

- 3-month EMA phase
- 4× daily assessments
- 18-21 items (more on Sundays)

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

- 3-month EMA phase
- 4× daily assessments
- 18-21 items (more on Sundays)
- Many items: 1-7 Likert scale

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

- 3-month EMA phase
- 4× daily assessments
- 18-21 items (more on Sundays)
- Many items: 1-7 Likert scale

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

EMA Protocol

- 3-month EMA phase
- 4× daily assessments
- 18-21 items (more on Sundays)
- Many items: 1-7 Likert scale

Passive Sensing

• Smartwatch: Garmin vivosmart 3

Data Collection

- Baseline assessment
- Multiple follow-ups

Recruitment

- Four cohorts
- 500 students each
- Population: Students of higher education in The Netherlands > 18 years

Data Collection

- Baseline assessment
- Multiple follow-ups

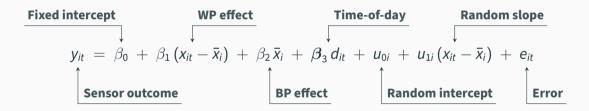
EMA Protocol

- 3-month EMA phase
- 4× daily assessments
- 18-21 items (more on Sundays)
- Many items: 1-7 Likert scale

Passive Sensing

- Smartwatch: Garmin vivosmart 3
- Continuous physiological monitoring

Self-report variable Sensor variable


Self-report variable	Sensor variable
Self-reported stress	Mean sensor stress
"I feel stressed right now"	Based on HR, HRV, & activity; scored 0-100 (0-
	25: resting, 26-50: low, 51-75: medium, 76-
	100: high stress).

Self-report variable	Sensor variable	
Self-reported stress	Mean sensor stress	
"I feel stressed right now"	Based on HR, HRV, & activity; scored 0-100 (0-	
	25: resting, 26-50: low, 51-75: medium, 76-	
	100: high stress).	
Self-reported tiredness	Mean body battery	
"I feel tired right now"	Based on HRV and activity; scored 0-100 (0-25:	
	charging, 26-100: tiring)	

Self-report variable	Sensor variable	
Self-reported stress	Mean sensor stress	
"I feel stressed right now"	Based on HR, HRV, & activity; scored 0-100 (0-	
	25: resting, 26-50: low, 51-75: medium, 76-	
	100: high stress).	
Self-reported tiredness	Mean body battery	
"I feel tired right now"	Based on HRV and activity; scored 0-100 (0-25:	
	charging, 26-100: tiring)	
Self-reported sleep quality	Sensor total sleep duration	
"Last night, I slept well"	Total sleep duration in hours	
Note: All self-report variables measured on 1-7 Likert scale ("not at all" to "very much")		

Multilevel models in nlme with maximum likelihood estimation:

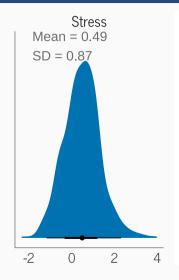
Multilevel models in nlme with maximum likelihood estimation:

Analysis	Stress	Tiredness	Sleep
Interaction with Age, Gender, Depression, Cohort	\checkmark	\checkmark	\checkmark
Change of Residual Correlation Structure	\checkmark	\checkmark	\checkmark
Informed "Binning" of Outcome	\checkmark	\checkmark	×
Alternative Outcome Operationalization	\checkmark	\checkmark	×
Different Lags & Aggregations	\checkmark	\checkmark	×

Main Results: EMA-Sensor Associations

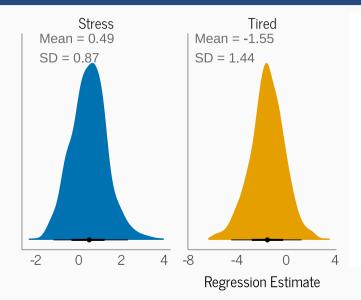
	Stress	Tiredness	Sleep
WP association	0.49	-1.55	0.33
95% CI	(0.35, 0.63)	(-1.68, -1.42)	(0.31, 0.35)
R ² (conditional)	0.22	0.42	0.28
RMSE	21.66	20.46	1.33

	Stress	Tiredness	Sleep
WP association	0.49	-1.55	0.33
95% CI	(0.35, 0.63)	(-1.68, -1.42)	(0.31, 0.35)
R ² (conditional)	0.22	0.42	0.28
RMSE	21.66	20.46	1.33

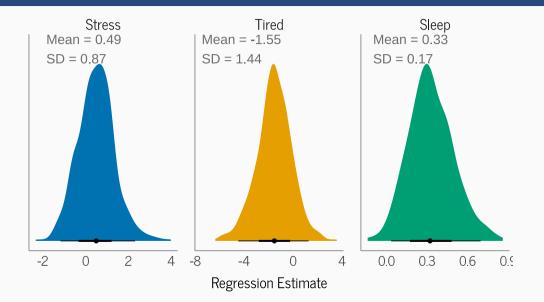

Additional Findings

Cohort Differences: Stress weaker in cohorts 2 & 4 (summer); Tiredness & Sleep

stronger in cohorts 2 & 4

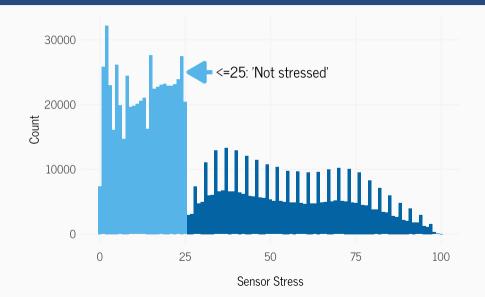

Demographics: No significant effects of age, gender, or depression on associations

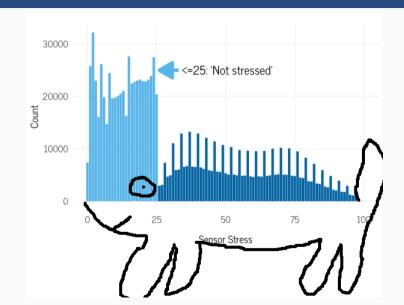
Individual Estimates



Regression Estimate

Individual Estimates


Individual Estimates


	Stress						Tired					
before	0.48 [0.33, 0.62]	0.42 [0.29, 0.56]	0.3 [0.18, 0.43]	0.21 [0.1, 0.32]	0.17 [0.08, 0.26]		-1.59 [-1.72, -1.46]	-1.62 [-1.75, -1.5]	-1.68 [-1.81, -1.55]	-1.77 [-1.9, -1.65]	-1.84 [-1.96, -1.71]	
e around -	0.54 [0.39, 0.68]	0.49 [0.35, 0.63]	0.46 [0.33, 0.6]	0.46 [0.33, 0.58]	0.41 [0.3, 0.51]	_	-1.55 [-1.68, -1.42]	-1.55 [-1.68, -1.42]	-1.53 [-1.66, -1.4]	-1.48 [-1.61, -1.36]	-1.4 [-1.52, -1.28]	
after	0.56 [0.42, 0.71]	0.53 [0.39, 0.67]	0.61 [0.47, 0.75]	0.67 [0.54, 0.81]	0.52 [0.4, 0.64]		-1.51 [-1.64, -1.38]	-1.45 [-1.58, -1.32]	-1.32 [-1.45, -1.19]	-1.09 [-1.22, -0.96]	-0.67 [-0.79, -0.55]	
	15	30	60	120	240		15	30	60	120	240	

Aggregation Window (in Minutes)

Raw Stress Distribution

Stress Dinosaur

Findings:

• Stress: Weak to no associations

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations
- Overall R² and RMSE relatively weak

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations
- Overall R² and RMSE relatively weak

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations
- Overall R² and RMSE relatively weak

Implications:

• Raw data could improve connection

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations
- Overall R² and RMSE relatively weak

Implications:

- Raw data could improve connection
- Sensors could still hold predictive value

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations
- Overall R² and RMSE relatively weak

Implications:

- Raw data could improve connection
- Sensors could still hold predictive value
- **Semantic gap** between sensors and self-report?

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations
- Overall R² and RMSE relatively weak

Implications:

- Raw data could improve connection
- Sensors could still hold predictive value
- **Semantic gap** between sensors and self-report?

Findings:

- Stress: Weak to no associations
- Sleep & Tiredness: Somewhat stronger associations
- Overall R² and RMSE relatively weak

Implications:

- Raw data could improve connection
- Sensors could still hold predictive value
- **Semantic gap** between sensors and self-report?

Image credit: Advnture/Future

Thank you

- 🗹 bjoern.siepe@uni-marburg.de
- BlueSky: bsiepe
- https://bsiepe.github.io/

Paper & Slides

References i

Garmin Watch: https://www.advnture.com/news/ if-your-garmin-watch-is-giving-you-strange-stress-warning-dont-ignore-them