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Analytical Flexibility in Time Series Modeling

Time series data often require complex models

Many analytical choices: Model selection, preprocessing, model
specification, interpretation...

Often, only one set of choices is conducted and reported

Robustness to arbitrary choices is underappreciated
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Emotion Dataset (Kullar et al., 2024):

« n =105, averaget = 62.31 (SD = 8.11)

« Items: Nine momentary emotions (Likert 7-point)
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1. Group threshold € {50%, 60%, 75%, 80%}
2. Subgroup threshold € {50%, 60%, 75%, 80%}

Five parameters refer to the fit indices used for model selection:

3. RMSEA cutoff € {.03, .05, .08}

4. SRMR cutoff € {.03,.05,.08}

5. NNFI cutoff € {.90, .95, .97}

6. CFl cutoff € {.90,.95,.97}

7. Fit measures satisfying the cutoffs € {1, 2, 3}

Conducted a small simulation study showing the arbitrariness of these choices
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Personality Results

« Group:

+ ~ 92% of models with same group path
+ Subgroup:

« Same subgroups
+ Individual

« On average, ~ 2 paths different in presence/absence from reference fit

« For those different effects: Absolute average difference of ~ 0.13

« For 12 individuals, the most central node was identical to the reference
model in less than one-third of all specifications
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Emotion Results

« Group:
« In ~ 50% specifications, four or five group effects (instead of one) were
estimated
« Subgroup:
« ~ 50% of subgroup solutions very dissimilar to the reference fit
« Subgroup threshold of 50% instead of 51%: Change of 128 paths
« Individual

« On average, ~ 9 paths different in absence/presence from reference fit

+ For those different effects: Absolute average difference of 0.2

« For 30 individuals, the most central node was identical to the reference
model in less than one-third of all specifications



Emotion Results
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Shiny App

Specification Curve Analysis

across different specifications.
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Shiny App for the paper "Network Multiverse" (Slepe & Heck, 2023). Find the source code on () GItHub.
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Q Applied £ Methodological
+ Results largely robust for + Multiverse analyses have focused
Personality dataset, less robust on preprocessing, but
for Emotion dataset algorithmic decisions are also
- Different algorithmic important
specifications can affect main + Relationship between simulation
conclusions, especially at studies and multiverse analyses

individual level
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