

Simulation Studies for Methodological Research: State of the Art, Issues, and Potential Solutions

Björn Siepe¹

June 26, 2025 – Münster Statistics & Methods Colloquium

¹Psychological Methods Lab, Department of Psychology, Universität Marburg

Introduction

Questionable research practices in simulation studies

Simulation studies in Psychology

Potential improvements

Discussion

Introduction

Quantitative methodological research

• **Diverse fields**: Statistics, psychometrics, bioinformatics, ecology, econometrics, machine learning, ...

Quantitative methodological research

- **Diverse fields**: Statistics, psychometrics, bioinformatics, ecology, econometrics, machine learning, ...
- Common question: Which data analysis methods work well when?

VS.

Quantitative methodological research

- **Diverse fields**: Statistics, psychometrics, bioinformatics, ecology, econometrics, machine learning, ...
- Common question: Which data analysis methods work well when?

- Tools:
 - Formal analysis and **mathematical proofs** \rightarrow theory
 - Application to **real data sets** \rightarrow case studies
 - Simulation studies \rightarrow controlled experiments

Simulation studies

Journal	Article contains simulation study
Journal of the American Statistical Association	186/200 = <mark>93%</mark>
Statistics in Medicine	104/115 = 90%
Psychological Methods	98/179 = 55%
Research Synthesis Methods	94/306 = 31%

Literature review from Pawel et al. (2024a)

 A simulation study of the number of events per variable in logistic regression analysis

 P Peduzzi, J Concato, E Kemper, TR Holford... - Journal of clinical ..., 1996 - Elsevier

 ... In a simulation study of forward stepwise multiple linear regression, Freedman and Pee [3]

 demonstrated that the ... In simulation studies of the effect of EPV on proportional ... Peter Peduzzi. ...

 ☆ Save 勁 Cite Cited by 8827
 Related articles All 9 versions

Simulation studies impact implementation of research

There can be problems with simulation studies

"The current **evidence supporting [the rule of ten] is weak** [...] there is an urgent need for new research to provide guidance for supporting sample size considerations for binary logistic regression" van Smeden et al. (2016)

Handling Missingness, Failures, and Non-Convergence in Simulation Studies: A Review of Current Practices and Recommendations

Samuel Pawel ¹, František Bartoš ^{2,*}, Björn S. Siepe ^{3,*}, Anna Lohmann ^{4,5,*}

Handling Missingness, Failures, and Non-Convergence in Simulation Studies: A Review of Current Practices and Recommendations

Samuel Pawel ©¹, František Bartoš O^{2,*}, Björn S. Siepe O^{3,*}, Anna Lohmann O^{4,5,*}

- Review of 482 simulation studies published in JASA, SiM, PM, RSM:
 - 23.0% mention missingness / failures / non-convergence

Handling Missingness, Failures, and Non-Convergence in Simulation Studies: A Review of Current Practices and Recommendations

Samuel Pawel ©¹, František Bartoš O^{2,*}, Björn S. Siepe O^{3,*}, Anna Lohmann O^{4,5,*}

- Review of 482 simulation studies published in JASA, SiM, PM, RSM:
 - 23.0% mention missingness / failures / non-convergence
 - 19.1% report frequency
 - 13.9% report handling
 - 46.7% share code

Handling Missingness, Failures, and Non-Convergence in Simulation Studies: A Review of Current Practices and Recommendations

Samuel Pawel ©¹, František Bartoš O^{2,*}, Björn S. Siepe O^{3,*}, Anna Lohmann O^{4,5,*}

- Review of 482 simulation studies published in JASA, SiM, PM, RSM:
 - 23.0% mention missingness / failures / non-convergence
 - 19.1% report frequency
 - 13.9% report handling
 - 46.7% share code
- Missingness classification, handling approaches, case-study

"... extensive simulation studies show that the proposed method performs **better than existing methods** ... "

"... extensive simulation studies show that the proposed method performs **better than existing methods** ..."

• Over-Optimism (e.g., Ullmann et al., 2022)

"... extensive simulation studies show that the proposed method performs **better than existing methods** ..."

- Over-Optimism (e.g., Ullmann et al., 2022)
- Issues similar to other empirical research (Boulesteix et al., 2020)

"... extensive simulation studies show that the proposed method performs **better than existing methods** ... "

- Over-Optimism (e.g., Ullmann et al., 2022)
- Issues similar to other empirical research (Boulesteix et al., 2020)
- Insufficient reporting standards (e.g., Hoaglin and Andrews, 1975)

"... extensive simulation studies show that the proposed method performs **better than existing methods** ... "

- Over-Optimism (e.g., Ullmann et al., 2022)
- Issues similar to other empirical research (Boulesteix et al., 2020)
- Insufficient reporting standards (e.g., Hoaglin and Andrews, 1975)
- Reproducibility? (e.g., Luijken et al., 2023)

"... extensive simulation studies show that the proposed method performs **better than existing methods** ..."

- Over-Optimism (e.g., Ullmann et al., 2022)
- Issues similar to other empirical research (Boulesteix et al., 2020)
- Insufficient reporting standards (e.g., Hoaglin and Andrews, 1975)
- Reproducibility? (e.g., Luijken et al., 2023)

xkcd.com (CC-BY-NC)

Meta-research on simulation studies

STATISTICS IN MEDICINE Statist. Med. 2006; 25:4279-4292 Published online 31 August 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.2673

The design of simulation studies in medical statistics

Andrea Burton^{1, 2, *, †}, Douglas G. Altman¹, Patrick Royston^{1,3} and Roger L. Holder⁴

On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses

Elizabeth KOEHLER, Elizabeth BROWN, and Sebastien J.-P. A. HANEUSE

DOI: 10.1002/bimj.20220010-

Biometrical Journal

DISCUSSION

Against the "one method fits all data sets" philosophy for comparison studies in methodological research

Carolin Strobl¹ ⁽⁰⁾ Friedrich Leisch²

Multivariate Behavioral Research, 35 (2), 137-167 Copyright © 2000, Lawrence Erlbaum Associates, Inc.

Design and Analysis of Monte Carlo Experiments: Attacking the Conventional Wisdom

Anders Skrondal

Some Thoughts on Simulation Studies to Compare Clustering Methods

Christian Hennig

OI: 10.1002/bimj.202200222

Biometrical Journal

RESEARCH ARTICLE

Phases of methodological research in biostatistics—Building the evidence base for new methods

Georg Heinze¹ | Anne-Laure Boulesteix² | Michael Kammer^{1,3} | Tim P. Morris⁴ | Ian R. White⁴ | on behalf of the Simulation Panel of the STRATOS initiative

•••

"In fact it is very difficult to run an honest simulation comparison, and easy to inadvertently cheat by choosing favorable examples, or by not putting as much effort into optimizing the dull old standard as the exciting new challenger."

Brad Efron (2001)

https://statistics.stanford.edu/people/bradley-efron

- Which questionable research practices (QRPs) exist in simulation studies?
- How can QRPs impact the conclusions of a study?
- How can QRPs be addressed?

Root causes

- Pressure to publish novel and positive results
- Low requirements from journals
- Cognitive biases (e.g., confirmation or hindsight bias)
- Low awareness in scientific community

Dirk-Jan Hoek (CC-BY)

Root causes

- Pressure to publish novel and positive results
- Low requirements from journals
- Cognitive biases (e.g., confirmation or hindsight bias)
- Low awareness in scientific community

Potential consequences

- Overoptimistic conclusions
- Publication bias
- Misinformed decisions

Dirk-Jan Hoek (CC-BY)

QRP Illustration

Received: 25 March 2022	Revised: 5 January 2023	Accepted: 9 January 2023							
DOI: 10.1002/bimj.2022000	91								
			Biometrical Journal						
RESEARCH ARTICLE									
D!+6-11									
Pitfalls and potentials in simulation studies: Questionable									
research practices in comparative simulation studies allow									
for gravity of any mathed									
for spurious claims of superiority of any method w									
Samuel Pawel	💿 Lucas Ko	ok 💿 🕴 Kelly Reeve 💿							

"By deliberately using several QRPs, we were able to present a method with no expected benefits [...] as an improvement over [...] wellestablished competitors."

Simulation studies in Psychology

Statistical Computing

The Department will any paties of page builts on all meters of overpaties in department. The Department will any paties and page builts on all meters of overpaties and the page of the p

The Reporting of Computation-Based Results in Statistics

DAVID C. HOAGLIN* and DAVID F. ANDREWS**

STATISTICS IN MEDICINE Statist. Med. 2006; 25:4279–4292 Published online 31 August 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.2673

The design of simulation studies in medical statistics

Andrea Burton^{1, 2, *, †}, Douglas G. Altman¹, Patrick Royston^{1,3} and Roger L. Holder⁴

TUTORIAL IN BIOSTATISTICS

WILEY Statistics

Using simulation studies to evaluate statistical methods

Tim P. Morris¹ | Ian R. White¹ | Michael J. Crowther²

Statistical Computing

The Department will any patient of the paths and a contract of compatibility of contrast (contrast contrast). The department of the program, attempt the simplify downsets and program attempt to the program, attempt to simplify downsets and program attempt to a simplify downsets at program attempt to a simplify attempt to a simplify downsets attempt to a simplify downsets at a contrast contrast of the program attempt to a simplify downsets attempt to a simplify downsets at a contrast contrast of the program attempt to a simplify downsets attempt to a simplify downsets at a contrast contrast of the program attempt to a simplify downsets attempt to a simplify downsets at a contrast contrast attempt to attempt

The Reporting of Computation-Based Results in Statistics

DAVID C. HOAGLIN* and DAVID F. ANDREWS**

STATISTICS IN MEDICINE Statist. Med. 2006; 25:4279-4292 Published online 31 August 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.2673

The design of simulation studies in medical statistics

Andrea Burton^{1, 2, *, †}, Douglas G. Altman¹, Patrick Royston^{1,3} and Roger L. Holder⁴

TUTORIAL IN BIOSTATISTICS

WILEY Statistics

Using simulation studies to evaluate statistical methods

Tim P. Morris¹¹⁰ | Ian R. White¹⁰ | Michael J. Crowther²⁰

This project:

Statistical Computing

The Department will save paties and patients and an entropy of constraints in selection. The Department will save paties and patients and an entropy of constraints of the program, wherein its servicities are particularly the an entropy of the program, wherein the service and patients are patients and the patients and the patients and the patients and the patients are patients and the patients are patients and the patients are patients and the patients and the patients are patients and the patients are patients are patients and the patients and the patients and the patients are patients and the patients are patients and the patients and the patients and the patients are patients and the patients and the patients are patients and the patients and the patients are patients and the patients are patients are patients are patients are patients and the patients and the patients and the patients are patients

The Reporting of Computation-Based Results in Statistics

DAVID C. HOAGLIN* and DAVID F. ANDREWS**

STATISTICS IN MEDICINE Statist. Med. 2006; 25:4279-4292 Published online 31 August 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.2673

The design of simulation studies in medical statistics

Andrea Burton^{1, 2, *, †}, Douglas G. Altman¹, Patrick Royston^{1,3} and Roger L. Holder⁴

TUTORIAL IN BIOSTATISTICS

WILEY Statistics

Using simulation studies to evaluate statistical methods

Tim P. Morris¹ | Ian R. White¹ | Michael J. Crowther²

This project:

Review of 100 recent simulation studies in psychology

Statistical Computing

The Department will any policies of the public or all interests developed and contrast in the public of the policies, policies, and public developed and pub

The Reporting of Computation-Based Results in Statistics

DAVID C. HOAGLIN* and DAVID F. ANDREWS**

STATISTICS IN MEDICINE Statist. Med. 2006; 25:4279-4292 Published online 31 August 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.2673

The design of simulation studies in medical statistics

Andrea Burton^{1, 2, *, †}, Douglas G. Altman¹, Patrick Royston^{1,3} and Roger L. Holder⁴

TUTORIAL IN BIOSTATISTICS

WILEY Statistics

Using simulation studies to evaluate statistical methods

Tim P. Morris¹ | Ian R. White¹ | Michael J. Crowther²

This project:

- Review of 100 recent simulation studies in psychology
- Psychological Methods, Behavior Research Methods, Multivariate Behavioral Research

Statistical Computing

The Department will any policies of the public or all interests developed and contrast in the public of the policies, policies, and public developed and pub

The Reporting of Computation-Based Results in Statistics

DAVID C. HOAGLIN* and DAVID F. ANDREWS**

STATISTICS IN MEDICINE Statist. Med. 2006; 25:4279-4292 Published online 31 August 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.2673

he	design	of	simul	lation	studies	in	medical	statistics
***	C.C	~ ~			0.000000			Detterberger

Andrea Burton^{1, 2, *, †}, Douglas G. Altman¹, Patrick Royston^{1,3} and Roger L. Holder⁴

TUTORIAL IN BIOSTATISTICS

т

WILEY Statistics

Using simulation studies to evaluate statistical methods

Tim P. Morris¹ | Ian R. White¹ | Michael J. Crowther²

This project:

- Review of 100 recent simulation studies in psychology
- Psychological Methods, Behavior Research Methods, Multivariate Behavioral Research
- Coding of various aspects of reporting

Psychological Methods

© 2024 American Psychological Association ISSN: 1082-989X

https://doi.org/10.1037/met0000695

Simulation Studies for Methodological Research in Psychology: A Standardized Template for Planning, Preregistration, and Reporting

Björn S. Siepe¹, František Bartoš², Tim P. Morris³, Anne-Laure Boulesteix^{4, 5}, Daniel W. Heck¹, and Samuel Pawel^{6, 7}

Main Results

Main Results

Additional Results

Additional Results

21

Reporting Suggestions

Table 3

Definitions of Common Performance Measures, their Estimates, Monte Carlo Standard Errors (MCSE), and Number of Simulation Repetitions n_{sim} to Achieve a Desired MCSE_{*}.

Performance measure	Definition	Estimate	MCSE	$n_{ m sim}$
Bias	$\mathrm{E}(\hat{ heta}) - heta$	$(\sum_{i=1}^{n_{\mathrm{sim}}} \hat{ heta}_i/n_{\mathrm{sim}}) - heta$	$\sqrt{S_{\hat{\theta}}^2/n_{\rm sim}}$	$S_{\hat{\theta}}^2/\mathrm{MCSE}^2_*$
Relative bias	$\{ \mathrm{E}(\hat{\theta}) - \theta \} / \theta$	$\{(\sum_{i=1}^{n_{ m sim}} \hat{ heta}_i/n_{ m sim}) - heta\}/ heta$	$\sqrt{S_{\hat{\theta}}^2/(\theta^2 n_{ m sim})}$	$S^2_{\hat{\theta}}/(\mathrm{MCSE}^2_*~\theta^2)$
Mean square error (MSE)	$\mathrm{E}\{(\hat{\theta}-\theta)^2\}$	$\sum_{i=1}^{n_{ m sim}} (\hat{ heta}_i - heta)^2 / n_{ m sim}$	$\sqrt{S^2_{(\hat{\theta}-\theta)^2}/n_{\rm sim}}$	$S^2_{(\hat{\theta}-\theta)^2}/\operatorname{MCSE}^2_*$
Root mean square error (RMSE)	$\sqrt{\mathrm{E}\{(\hat{\theta}-\theta)^2\}}$	$\sqrt{\sum_{i=1}^{n_{ m sim}} (\hat{ heta}_i - heta)^2 / n_{ m sim}}$	$\sqrt{S_{(\hat{\theta}-\theta)^2}^2/(4n_{\rm sim}\widehat{\rm MSE})}$	$S^2_{(\hat{\theta}-\theta)^2}/(\widehat{\mathrm{MSE}}\ \mathrm{MCSE}^2_*)$
Empirical variance	$\operatorname{Var}(\hat{\theta})$	$S^2_{\hat{\theta}}$	$S_{\hat{\theta}}^2 \sqrt{2/(n_{\rm sim}-1)}$	$1+2(S_{\hat{\theta}}^2)^2/\operatorname{MCSE}^2_*$
Empirical standard error	$\sqrt{\operatorname{Var}(\hat{ heta})}$	$\sqrt{S_{\hat{\theta}}^2}$	$\sqrt{S_{\hat{\theta}}^2 / \{2(n_{\rm sim} - 1)\}}$	$1+S_{\hat{\theta}}^2/(2\mathrm{MCSE}^2_*)$
Coverage	$\Pr(\operatorname{CIincludes}\theta)$	$\sum_{i=1}^{n_{\rm sim}} \mathbbm{1}(\mathrm{CI}_i \text{ includes } \theta)/n_{\rm sim}$	$\sqrt{\widehat{\mathrm{Cov}}(1-\widehat{\mathrm{Cov}})/n_{\mathrm{sim}}}$	$\widehat{\mathrm{Cov}}(1-\widehat{\mathrm{Cov}})/\mathrm{MCSE}^2_*$
Power (or Type I error rate)	$\Pr(\text{Test rejects } H_0)$	$\sum_{i=1}^{n_{\rm sim}} \mathbbm{1}({\rm Test}_i \text{ rejects } H_0)/n_{\rm sim}$	$\sqrt{\widehat{\mathrm{Pow}}(1-\widehat{\mathrm{Pow}})/n_{\mathrm{sim}}}$	$\widehat{\mathrm{Pow}}(1-\widehat{\mathrm{Pow}})/\mathrm{MCSE}^2_*$
Mean CI width	$\mathrm{E}(\mathrm{CI}_{\mathrm{upper}}-\mathrm{CI}_{\mathrm{lower}})$	$\sum_{i=1}^{n_{\rm sim}} (\mathrm{CI}_{i,\mathrm{upper}} - \mathrm{CI}_{i,\mathrm{lower}})/n_{\mathrm{sim}}$	$\sqrt{S_W^2/n_{ m sim}}$	S_W^2/MCSE^2_*
Mean of generic statistic G	$\mathrm{E}(G)$	$\sum_{i=1}^{n_{\mathrm{sim}}} G_i/n_{\mathrm{sim}}$	$\sqrt{S_G^2/n_{ m sim}}$	$S_G^2/{ m MCSE}^2_*$
Note. Table adapted from Table 6 in Morris et al.	(2019)			

Potential improvements

How to address questionable research practices?

Researchers

- Preregistered simulation protocols
- Adversarial collaboration
- Blinding of analysis
- Transparent reporting (e.g., disclose non-neutrality)

How to address questionable research practices?

Researchers

- Preregistered simulation protocols
- Adversarial collaboration
- Blinding of analysis
- Transparent reporting (e.g., disclose non-neutrality)

Reviewers, journals, funders

- Encourage simulation protocols
- Incentivize neutrality and transparency in simulation studies
- Deincentivize outperforming state-of-the-art methods

Simulation study protocols

STATISTICS IN MEDICINE Statist. Med. 2006; 25:4279–4292 Published online 31 August 2006 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/sim.2673

The design of simulation studies in medical statistics

Andrea Burton^{1, 2, *, †}, Douglas G. Altman¹, Patrick Royston^{1,3} and Roger L. Holder⁴

"When planning a simulation study, it is recommended that a detailed protocol be produced, giving full details of how the study will be performed, analysed and reported." Burton et al. (2006)

Advantages

- + Planning and reporting
- + Transparency and replicability
- + Can be preregistered
- ? Less/more work

ightarrow How to structure protocol?

0. Det	ailed protocol of all aspects of the simulation study
	a. Justifications for all the decisions made
1. Cle	arly defined aims and objectives
2. Sim	ulation procedures
	a. Level of dependence between simulated datasets
	b. Allowance for failures
	c. Software to perform simulations
	d. Random number generator to use
	e. Specification of the starting seeds
3. Me	thods for generating the datasets
4. Sce	narios to be investigated
5. Stat	tistical methods to be evaluated
6. Esti mea	imates to be stored for each simulation and summary asures to be calculated over all simulations
7. Nu	mber of simulations to be performed
8. Cri sce	teria to evaluate the performance of statistical methods for different narios
	a. Assessment of bias
	b. Assessment of accuracy
	c. Assessment of coverage
9 Pro	sentation of the simulation results

Proposal from Burton et al. (2006)

ADEMP-PreReg Template for Simulation Studies

March 20, 2025

Version: 1.1 Last updated: 2024-11-18

Protocol template based on:

- ADEMP structure (Morris et al., 2019)
- Open science aspects
- Reproducibility aspects

ADEMP: doi.org/10.1214/ss/1009213726, ADEMP-PreReg: doi.org/10.31234/osf.io/ufgy6

The ADEMP-PreReg template – Different versions

ET_FX, Overleaf

MS/Libre office, Google docs

The ADEMP-PreReg template – A living document

ADEMP-PreReg	k)	⊙ Watch 1 +	Ϋ́ Fork 2 ▼ ✿ Star 3
P main 👻 P 🛇	Go to file	+ 🗘 Code 🔹	About
SamCH93 add Morris et a	ADEMP preregistration protoco for simulation studies		
ADEMP-PreReg.docx fix typos, add link		7 months ago	C Readme
ADEMP-PreReg.pdf	fix typos, add link	7 months ago	-∿ Activity ☆ 3 stars
ADEMP-PreReg.tex	fix typos, add link	7 months ago	 1 watching
🗅 Makefile	remove odt file, other smaller ch	7 months ago	¥ 2 forks
🗅 Readme.md	add Morris et al. citation to REA	2 weeks ago	report repository
🗅 bibliography.bib	add DOI	7 months ago	Releases 1
C reference.docx	erence.docx section numbering and page co		Inital Template Version (Late on Oct 31, 2023
C README		∥ :≡	Packages
ADEMP Prer	egistration		No packages published Publish your first package
the antit i fer	egistiation		Contributors 2

https://github.com/bsiepe/ADEMP-PreReg

The ADEMP-PreReg template – Overview

- 1. Instructions
- 2. General information
- 3. Aims
- 4. Data-generating mechanism
- 5. Estimands and targets
- 6. Methods
- 7. Performance Measures
- 8. Computational details

7 Performance Measures

7.1 Which performance measures will be used?

Explanation: Please provide details on why they were chosen and on how these measures will be calculated. Ideally, provide formulas for the performance measures to avoid ambiguity. Some models in psychology, such as item response theory or times series models, often contain multiple parameters of interest, and their number may vary across conditions. With a large number of estimated parameters, their performance measures are often combined. If multiple estimates are aggregated, specify how this aggregation will be performed. For example, if there are multiple parameters

in a particular condition, the mean of the individual biases of these parameters or the bias of each individual parameter may be reported.

Example

Our primary performance measures are the type I error rate (in conditions where the true effect is zero) and the power (in conditions where the true effect is nonzero) to reject the null hypothesis of no difference between the control and treatment condition. The null hypothesis is rejected if the *p*-value for the null hypothesis of no effect is less than or equal to the conventional threshold of 0.05. The rejection rate (the type I error rate or the power, depending on the data generating mechanism) is estimated by

$$\widehat{\text{Rate}} = \frac{\sum_{i=1}^{n_{\text{sim}}} 1(p_i \le 0.05)}{n_{\text{sim}}}$$

where 1($\rho_i \leq 0.05$) is the indicator of whether the *p*-value in simulation *i* is equal to or less than 0.05. We use the following formula to compute the MCSE of the rejection rate

$$\text{MCSE}_{\text{RRate}} = \sqrt{\frac{\overline{\text{RRate}}(1 - \overline{\text{RRate}})}{n_{\text{sim}}}}.$$

Purposes

Purposes

• Blueprint for **planning**, **reporting** &

reviewing of simulation studies

Purposes

- Blueprint for planning, reporting & reviewing of simulation studies
- **Preregistration** brings multiple benefits similar to other empirical research
 - Avoid QRPs
 - Increase transparency
 - Improve informativeness

Limitations

Purposes

- Blueprint for planning, reporting & reviewing of simulation studies
- **Preregistration** brings multiple benefits similar to other empirical research
 - Avoid QRPs
 - Increase transparency
 - Improve informativeness

Limitations

• Preregistration could be **faked**

Purposes

- Blueprint for planning, reporting & reviewing of simulation studies
- **Preregistration** brings multiple benefits similar to other empirical research
 - Avoid QRPs
 - Increase transparency
 - Improve informativeness

Limitations

- Preregistration could be **faked**
- May slow down exploratory research

doi:10.5281/zenodo.7994221

- Checking for computational reproducibility
- Using the **same code** and data
- Confirms technical correctness & transparency

Reproduction Direct Replication

- Checking for computational reproducibility
- Using the **same code** and data
- Confirms technical correctness & transparency

- Checking for computational reproducibility
- Using the **same code** and data
- Confirms technical correctness & transparency

Direct Replication

- Using descriptions in paper
- Same methods, new implementation
- Tests methodological clarity

- Checking for computational reproducibility
- Using the **same code** and data
- Confirms technical correctness & transparency

Direct Replication

- Using descriptions in paper
- Same methods, new implementation
- Tests methodological clarity

Conceptual Replication

- Checking for computational reproducibility
- Using the **same code** and data
- Confirms technical correctness & transparency

Direct Replication

- Using descriptions in paper
- Same methods, new implementation
- Tests methodological clarity

Conceptual Replication

- Investigating similar underlying question
- Alternative methods or scenarios
- Tests generalizability of findings

Replications: Why?

Replications: Why?

"simulation studies face challenges similar to other experimental empirical research and hence should not be exempt from replication attempts" Lohmann et al. (2022)

ROYAL SOCIETY OPEN SCIENCE

Research articles

Replicability of simulation studies for the investigation of statistical methods: the RepliSims project

K. Luijken[†] ⊠, A. Lohmann[†], U. Alter[‡], J. Claramunt Gonzalez[‡], F. J. Clouth[‡], J. L. Fossum[‡], L. Hesen[‡], A. H. J. Huizing[‡], J. Ketelaar[‡], A. K. Montoya[‡], L. Nab[‡], R. C. C. Nijman[‡], B. B. L. Penning de Vries[‡], T. D. Tibbe[‡], Y. A. Wang[‡] and R. H. H. Groenwold

Published: 17 January 2024 https://doi.org/10.1098/rsos.231003

"the information provided in the original publication of highly cited and influential simulation studies was **often insufficient for complete replication**" Luijken et al. (2024)

 Almost Perfect Replication: Results were almost perfectly replicated in three studies.

- Almost Perfect Replication: Results were almost perfectly replicated in three studies.
- **Impossible Replication:** One study provided **insufficient information** to implement any simulation scenarios.

- Almost Perfect Replication: Results were almost perfectly replicated in three studies.
- **Impossible Replication:** One study provided **insufficient information** to implement any simulation scenarios.
- Partial Replication: Four studies with varying challenges:

- Almost Perfect Replication: Results were almost perfectly replicated in three studies.
- **Impossible Replication:** One study provided **insufficient information** to implement any simulation scenarios.
- Partial Replication: Four studies with varying challenges:
 - Austin: Parameter values misaligned with data descriptions
 - Flora & Curran: Overall consistency, but differences due to software environments
 - **MacKinnon et al.:** Main conclusions replicated, but one method excluded due to unclear procedures
 - **Peters et al.:** General patterns matched, but results only shown as figures made matching difficult
Current trends

Current trends

- Focus on "neutral comparison studies" (Boulesteix et al., 2013)
- Some journals adopt reproducibility checks (Wrobel et al., 2024)
- Various fields discuss how to improve methodological research (e.g., Robinson and Vitek, 2019; Van Mechelen et al., 2023; Herrmann et al., 2024)
- Meta-research on simulation/benchmarking studies continues

Phases of methodological research (Heinze et al., 2024)

diagnostics, pitfalls.

Against "one method fits all [data sets]" (Strobl and Leisch, 2024)

Against "one method fits all [data sets]" (Strobl and Leisch, 2024)

FIGURE 1 "Climb the tree". Drawing by Alexandra Kalberer

WIP: Synthetic benchmarking

Separate Studies (Status Quo)

DGM: Data-Generating Mechanism PM: Performance Measure

WIP: Synthetic benchmarking

Discussion

Conclusions

Received: 25 March 2022 Revised: 5 January 2023	Accepted: 9 January 2023		
DOI: 10.1002/bimj.202200091		Biometrical Journal	© 2034 American Psychological Assoc ISSN: 1062-999X
Pitfalls and potenti research practices i for spurious claims	ls in simulation studies a comparative simulatio of superiority of any met	: Questionable n studies allow thod 9	Simulati A Standard Björ
Samuel Pawel 💿 🕴 Lucas Ko	ok 💿 👘 Kelly Reeve 💿		

- Simulation studies are ubiquitous in methodological research
- Simulation studies can be impacted by questionable research practices and misaligned incentives
- Protocols have potential to improve simulation studies
- Meta-research, discussions, and reforms needed to increase awareness and improve standards

- Which simulation studies require which degree of rigour?
- How to avoid cheating in preregistration?
- How can journals/researchers/reviewers/communities promote **good practices**?
- Other ways to improve simulation studies?

P

xkcd.com (CC-BY-NC)

A multidisciplinary collaboration

František Bartoš

Daniel W. Heck

Tim P. Morris

A.-L. Boulesteix

Anna Lohmann

Samuel Pawel

- 🔄 bjoern.siepe@uni-marburg.de
- A https://bsiepe.github.io/

References i

- Boulesteix, A.-L., Hoffmann, S., Charlton, A., and Seibold, H. (2020). A replication crisis in methodological research? Significance, 17(5):18–21. doi:10.1111/1740-9713.01444.
- Boulesteix, A.-L., Lauer, S., and Eugster, M. J. A. (2013). A plea for neutral comparison studies in computational sciences. *PLoS ONE*, 8(4):e61562. doi:10.1371/journal.pone.0061562.
- Breiman, L. (2001). Statistical modeling: The two cultures (with comments and a rejoinder by the author). Statistical Science, 16(3):199–231. doi:10.1214/ss/1009213726.
- Burton, A., Altman, D. G., Royston, P., and Holder, R. L. (2006). The design of simulation studies in medical statistics. *Statistics in Medicine*, 25(24):4279–4292. doi:10.1002/sim.2673.
- Heinze, G., Boulesteix, A.-L., Kammer, M., Morris, T. P., and and, I. R. W. (2024). Phases of methodological research in biostatistics—building the evidence base for new methods. *Biometrical Journal*. doi:10.1002/bimj.202200222.
- Hennig, C. (2018). Some thoughts on simulation studies to compare clustering methods. Archives of Data Science, Series A, 5(1). doi:10.5445/KSP/1000087327/24.
- Herrmann, M., Lange, F. J. D., Eggensperger, K., Casalicchio, G., Wever, M., Feurer, M., Rügamer, D., Hüllermeier, E., Boulesteix, A.-L., and Bischl, B. (2024). Position: Why we must rethink empirical research in machine learning. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F., editors, *Proceedings of the 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*, pages 18228–18247. PMLR.
- Hoaglin, D. C. and Andrews, D. F. (1975). The reporting of computation-based results in statistics. *The American Statistician*, 29(3):122–126. doi:10.1080/00031305.1975.10477393.
- Hu, L.-t. and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1):1–55. doi:10.1080/10705519909540118.

References ii

- Kirmeier, E., Eriksson, L. I., Lewald, H., Jonsson Fagerlund, M., et al. (2019). Post-anaesthesia pulmonary complications after use of muscle relaxants (popular): a multicentre, prospective observational study. *The Lancet Respiratory Medicine*, 7(2):129–140. doi:10.1016/s2213-2600(18)30294-7.
- Koehler, E., Brown, E., and Haneuse, S. J.-P. A. (2009). On the assessment of Monte Carlo error in simulation-based statistical analyses. The American Statistician, 63(2):155–162. doi:10.1198/tast.2009.0030.
- Lohmann, A., Astivia, O. L. O., Morris, T. P., and Groenwold, R. H. H. (2022). It's time! Ten reasons to start replicating simulation studies. 2:973470. doi:10.3389/fepid.2022.973470.
- Luijken, K., Lohmann, A., Alter, U., Claramunt Gonzalez, J., Clouth, F. J., Fossum, J. L., Hesen, L., Huizing, A. H. J., Ketelaar, J., Montoya, A. K., Nab, L., Nijman, R. C. C., Penning de Vries, B. B. L., Tibbe, T. D., Wang, Y. A., and Groenwold, R. H. H. (2024). Replicability of simulation studies for the investigation of statistical methods: the replisims project. *Royal Society Open Science*, 11(1). doi:10.1098/rsos.231003.
- Luijken, K., Lohmann, A., Alter, U., Gonzalez, J. C., Clouth, F. J., Fossum, J. L., Hesen, L., Huizing, A. H. J., Ketelaar, J., Montoya, A. K., Nab, L., Nijman, R. C. C., de Vries, B. B. L. P., Tibbe, T. D., Wang, Y. A., and Groenwold, R. H. H. (2023). Replicability of simulation studies for the investigation of statistical methods: The replisims project. doi:10.48550/ARXIV.2307.02052. arXiv preprint.
- Morris, T. P., White, I. R., and Crowther, M. J. (2019). Using simulation studies to evaluate statistical methods. Statistics in Medicine, 38(11):2074–2102. doi:10.1002/sim.8086.
- Pawel, S., Bartoš, F., Siepe, B. S., and Lohmann, A. (2024a). Handling missingness, failures, and non-convergence in simulation studies: A review of current practices and recommendations. doi:10.48550/arXiv.2409.18527. URL https://arxiv.org/abs/2409.18527. arXiv preprint.
- Pawel, S., Kook, L., and Reeve, K. (2024b). Pitfalls and potentials in simulation studies: Questionable research practices in comparative simulation studies allow for spurious claims of superiority of any method. *Biometrical Journal*, (e2200091):1–19. doi:10.1002/bimj.202200091.

References iii

- Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., and Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49(12):1373–1379. doi:10.1016/s0895-4356(96)00236-3.
- Robinson, M. D. and Vitek, O. (2019). Benchmarking comes of age. Genome Biology, 20(1):205. doi:10.1186/s13059-019-1846-5.
- Siepe, B. S., Bartoš, F., Morris, T. P., Boulesteix, A.-L., Heck, D. W., and Pawel, S. (2024). Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. *Psychological Methods*. doi:10.31234/osf.io/ufgy6. URL https://doi.org/10.1037/met0000695. to appear.
- Skrondal, A. (2000). Design and analysis of monte carlo experiments: Attacking the conventional wisdom. *Multivariate Behavioral Research*, 35(2):137–167. doi:10.1207/s15327906mbr3502_1.
- Strobl, C. and Leisch, F. (2024). Against the "one method fits all data sets" philosophy for comparison studies in methodological research. *Biometrical Journal*. doi:10.1002/bimj.202200104.
- Ullmann, T., Beer, A., Hünemörder, M., Seidl, T., and Boulesteix, A.-L. (2022). Over-optimistic evaluation and reporting of novel cluster algorithms: An illustrative study. Advances in Data Analysis and Classification. doi:10.1007/s11634-022-00496-5. Advance online publication.
- Van Mechelen, I., Boulesteix, A., Dangl, R., Dean, N., Hennig, C., Leisch, F., Steinley, D., and Warrens, M. J. (2023). A white paper on good research practices in benchmarking: The case of cluster analysis. *WIREs Data Mining and Knowledge Discovery*, 13(6). doi:10.1002/widm.1511.
- van Smeden, M., de Groot, J. A. H., Moons, K. G. M., Collins, G. S., Altman, D. G., Eijkemans, M. J. C., and Reitsma, J. B. (2016). No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. *BMC Medical Research Methodology*, 16(1). doi:10.1186/s12874-016-0267-3.
- Wrobel, J., Hector, E. C., Crawford, L., McGowan, L. D., da Silva, N., Goldsmith, J., Hicks, S., Kane, M., Lee, Y., Mayrink, V., Paciorek, C. J., Usher, T., and Wolfson, J. (2024). Partnering with authors to enhance reproducibility at JASA. *Journal of the American Statistical Association*, 119(546):795–797. doi:10.1080/01621459.2024.2340557.